Mebel-ot-artura.ru

Мебель от Артура
25 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Железобетонная обойма для труб

ОУ 16

Размеры:

  • Длинна: 5000 мм.
  • Ширина: 2390 мм.
  • Высота: 1640 мм.
  • Вес: 27250 кг.
  • ГОСТ, Серия: Серия Б 3.503.1-2.02 скачать
  • Объем бетона: 10,9 м3
  • Геометрический объем: 19,598 м3
  • Цена: договорная

Стандарт изготовления изделия: Серия Б 3.503.1-2.02

Обойма усиления железобетонная монолитная ОУ 16 — это изделие представлено в виде прямоугольного блока с отверстием внутри для трубы. Такая конструкция может называться «железобетонной рубашкой», так как основное ее предназначение состоит в создании прочной оболочки вокруг трубы. Обоймы усиления рекомендуется применять в случае, если другими методами не удается обеспечить требуемую несущую способность, изделий, для которых они созданы. Разработанные по Серии Б3.503.1-2.02 обоймы ОУ 16 , предназначены для безнапорных железобетонных виброгидропрессованных труб, применяющихся в свою очередь в водопропускных сооружениях на автомобильных дорогах. Для таких труб обоймы необходимы как средство увеличения несущей способности для того, чтобы выдержать нагрузку грунта и его давление от действия подвижной нагрузки поверхности на глубине или как условие защиты трубы от обвала земли.

Расшифровка маркировки изделия

Железобетонная обойма усиления обладает индивидуальной условной маркировкой. Марка состоит из буквенно — цифровых групп, которые несут в себе информационную нагрузку об основных характеристиках и параметрах изделия. Так, если рассматривать расшифровку ОУ 16 более подробно, то можно увидеть следующее:

1. ОУ — обойма усиления;

2. 16 — типоразмер.

Маркировка конструкции должна строго выдерживаться в проектах.

Материалы и производство

При изготовлении обоймы усиления ОУ 16, производители обязаны руководствоваться чертежами и спецификацией из Серии Б3.503.1-2.02 , в которой указаны технологические нормы соответствия готовой продукции. Изделия изготавливают на месте строительной площадки. Основной применяемый материал — тяжёлый бетон В20, в состав которого входит цемент, наполнитель и вода. Для улучшения характеристик в бетон могут добавляться различные минеральные и химические добавки. Марка бетонной смеси по морозостойкости и водонепроницаемости определяется автором проекта в индивидуальном порядке, в зависимости от режима эксплуатации и климатических особенностей объекта строительства.

Для придания большей прочности обойме усиления ОУ 16 , помимо использования плотного бетона, ее армируют сетками и стержнями из стали А-I и A-III. Благодаря специальной обработке такая арматура выдерживает большие механические нагрузки и совершенно не поддается коррозии. Также стоит заметить, что данный материал долговечен и прочен. Сталь, используемая при изготовлении сеток, каркасов должна обладать гарантией свариваемости.

В целом, устройство водопропускной трубы с обоймой усиления осуществляется в следующей последовательности:

1. подготовка и профилировка основания по проектному уклону;

2. устройство бетонной подготовки;

3. установка арматуры и бетонирование обоймы до отметки раструба трубы;

4. монтаж труб после достижения прочности бетона не менее 50% от проектной;

5. заделка стыковых соединений труб и окончание бетонирования обоймы ;

6. нанесение гидроизоляционного покрытия;

7. послойная засыпка трубы грунтом с уплотнением; (по проекту)

8. заделка стыковых соединений труб изнутри.

Готовая общая конструкция должна быть прочная и трещиностойкая. На готовой обойме запрещаются различные трещины, за исключением технологических, а также наплывы бетонной массы.

Транспортировка и хранение

Железобетонные обоймы для безнапорных виброгидропрессованных труб не нуждаются в перевозке и складировании, так как собираются, непосредственно, уже на месте. Однако, при перевозке необходимой арматуры для создания ОУ 16 , необходимо пользоваться всеми мерами безопасности, которые исключат ее возможное повреждение.

Железобетонная обойма для труб

1. Устройство железобетонной обоймы

Устройство железобетонных обойм выполняют в тех случаях, когда на отдельных участках фундамента прочность кладки нижележащих слоев меньше прочности вышележащих. Работы выполняют по захваткам длиной 2. 2,5 м. Железобетонные обоймы могут устраиваться с одной или с двух сторон. При устройстве двухсторонней железобетонной обоймы (рис. 4, а) в теле фундамента в шахматном порядке через 1. 1,5 м просверливают сквозные поперечные отверстия. Затем с обеих сторон устанавливают арматурные сетки Арматурные сетки соединяют между собой затяжками (арматурными стержнями диаметром 12. 20 мм), которые устанавливают в просверленные отверстия. Затем устанавливают опалубку и выполняют бетонирование подвижной бетонной смесью (осадка конуса более 15 см). Бетонирование может выполняться методом послойного торкретирования. Минимальная толщина обоймы — 150 мм.

При устройстве односторонней железобетонной обоймы (рис. 4, б) поперечные арматурные стержни анкеруют в ранее просверленные гнезда в теле фундамента, а затем к ним крепят арматурные сетки.

2. Устройство буроинъекционных свай

Увеличить одновременно несущую способность фундамента и основания можем путем устройства буроинъекционных свай. Их применение позволяет производить работы по усилению фундамента без разработки траншей и нарушения структуры грунта в основании.

Сущность способа заключается в устройстве под зданием буроинъекционных (корневидных) свай, которые передают значительную часть нагрузки на более плотные слои грунта (рис. 5). Сваи выполняют вертикальными или наклонными с помощью установок вращательного бурения, которые позволяют пробуривать скважины диаметром от 80 до 250 мм не только в грунтах основания, но и в теле фундамента. Устройство буроиньекционных свай выполняется в следующей последовательности:

бурение «лидерной» скважины; заполнение ее пластичным цементно-песчаным раствором; установка трубы-кондуктора до начала схватывания раствора; технологический перерыв для набора раствором требуемой прочности; бурение рабочей скважины до проектной отметки под защитой глинистого раствора или обсадной трубы; заполнение скважины цементно-песчаным раствором через буровой остов или трубу-инъектор снизу вверх до полного вытеснения глинистого раствора; посекционная установка арматурных каркасов; опрессовка свай.

При установке арматурных каркасов понижение уровня раствора в скважине не должно превышать более 0,5 м. Для опрессовки сваи на верхнюю часть трубы-кондуктора устанавливают тампон (обтюратор) с манометром и через инъектор нагнетают под давлением цементно-песчаный раствор. При значительном расходе раствора из-за фильт-рации грунта основания делают технологический перерыв в течение 1 суток и опрессовку повторяют.

3. Уширение подошвы банкетамии сборными ж/б отливами

Уширение подошвы фундамента выполняют банкетами из бутовой кладки или из монолитного бетона и железобетона, банкетами балочного типа, а также с помощью монолитных и сборных железобетонных подушек.

Устройство банкет из бутовой кладки выполняется крайне редко из-за большой трудоемкости работ. Чаще всего применяют одно- и двусторонние банкеты из монолитного бетона и железобетона. Конструкция банкет зависит от способа их связи с существующим фундаментом и схем передачи нагрузки от сооружения на усиляемый фундамент.

Наибольшее распространение получили банкеты, где передача нагрузки от сооружения осуществляется с помощью опорных балок (рис. 6). Для этого в стене пробивают сквозные отверстия с шагом 1,5. 2 м. в которые перпендикулярно к стене устанавливают опорные балки из стального швеллера (двутавра) или железобетона. Нагрузка на банкеты передается через распределительные балки из швеллера или двутавра №16. 18, которые располагают вдоль стены. Работы выполняются в следующей последовательности:

разбирают отмостку (при необходимости) и пол первого этажа;

устраивают водосборные колодцы, ограждения;

в пределах захватки (длина 1,5. 2 м) отрывают траншею с одной или обеих сторон фундамента;

очищают боковые поверхности фундамента;

устраивают основание под банкет из щебня толщиной 50. 100 мм путем втрамбовывания его в грунт;

в теле фундамента просверливают отверстия (в шахматном порядке через 0,25. 0,35 м по высоте 1,2. 1,5 м по длине фундамента) и забивают в них анкерные стержни диаметром 16 мм;

устанавливают опалубку и бетонируют банкет до отметки низа распределительных балок;

после набора бетоном требуемой прочности (не менее 70% проектной) устраивают в стене «окна» и устанавливают в них опорные балки;

монтируют распределительные балки и сваривают их с опорными балками;

производят добетонирование банкета на высоту распределительных балок и заделку зазоров в «окнах»‘ для опорных балок. Допускается также и обетонированне опорных балок. Класс бетона — не менее В12,5.

Также известен способо устройства сборных железобетонных отливов (рис. 7).

4. Уширение подошвы сборными и монолитными железобетонными плитами

При уширении подошвы фундамента путем подводки монолитных или сборных железобетонных плит (рис. 8) из-под него в пределах захватки длиной 1,5. 2 м удаляют грунт.

Железобетонные плиты монтируют на подготовленное выровненное основание. Зазор между поверхностью плит и подошвой фундамента зачеканивают жестким цементно-песчаным раствором марки 100.

Процесс устройства монолитной железобетонной подушки менее трудоемок. Для этого на подготовленное основание укладывают арматурные сетки, устанавливают опалубку и укладывают бетонную смесь. Уплотнение бетонной смеси выполняют вибрированием. Для обеспечения надежного контакта укладываемой бетонной смеси с фундаментом бетонирование производят на 100. 150 мм выше отметки его подошвы. Класс бетона В12,5 и более.

5. Увеличение глубины заложения фундаментов

Увеличение глубины заложения фундамента

Углубление фундаментов выполняют с применением бутовой (кирпичной) кладки, монолитного бетона и железобетона.

Способ углубления фундаментов с использованием бутовой кладки отличается высокой трудоемкостью и применяется при незначительных нагрузках. В этом случае вначале разгружают фундаменты и при наличии ослабленных участков стен устанавливают рандбалки. Затем на отдельных захватках длиной 1,5. 2 м в заранее намеченной очередности отрывают колодцы на проектную глубину с временным креплением стенок, разбирают нижнюю ослабленную часть фундамента (при необходимости) и удаляют грунт, подводя под фундамент временные крепления. Кладку нового фундамента выполняют с перевязкой швов, удаляя крепление снизу вверх. Зазор между верхним обрезом новой кладки и нижним обрезом старого фундамента зачеканивают полусухим цементно-песчаным раствором состава 1:3.

Более эффективным является способ углубления фундаментов с применением монолитного бетона (рис. 9). Как и в предыдущем случае, вначале разгружают фундамент, а затем отрывают шурфы на 0,7. 1 м ниже подошвы фундамента, стенки шурфов крепят щитами. У передней стенки устанавливают прочную раму из бруса или круглого леса. Верхняя перекладина рамы должна находиться на 30. 50 мм ниже подошвы фундамента. Между подошвой и верхней перекладиной рамы в грунт забивают доски, т.е. устраивают забирку, под защитой которой на проектную глубину отрывают колодец. Затем в колодец укладывают и уплотняют бетонную смесь, оставляя между подошвой фундамента и поверхностью бетона зазор 300. 400 мм. После набора бетоном требуемой прочности с помощью домкратов производят обжатие основания новой части фундамента, используя при этом массу существующего здания. После этого бетонируют зазор, укладывая бетонную смесь на 100 мм выше подошвы старого фундамента с целью обеспечения плотного контакта.

Исключить трудоемкие работы по разгрузке фундамента позволяет технология выполнения работ по его углублению и одновременному расширению (рис. 10). На захватке отрывают траншею на глубину заложения фундамента. Затем устраивают подкоп под подошву существующего фундамента по всей длине захватки на половину его ширины. В боковую стенку подкопа забивают горизонтальные поперечные арматурные стержни диаметром 14. 18 мм. Нижний ряд стержней устанавливают с шагом 200 мм на 100 мм выше дна траншеи, а верхний ряд — с таким же шагом на 50. 70 мм ниже подошвы существующего фундамента. К поперечным стержням приваривают профильные стержни такого же диаметра с шагом 200 мм. В траншее устанавливают щит опалубки на уровне подошвы фундамента и на расстоянии 200 мм от его боковой поверхности. Затем укладывают и уплотняют бетонную смесь, монтируют вертикальную арматурную сетку (размер ячейки 200×200 мм, диаметр вертикальных стержней 14. 18 мм, горизонтальных — 6 мм). Арматурную сетку втапливают на 200. 250 мм в свежеуложенный слой бетонной смеси, устанавливают опалубку второго яруса, укладывают и уплотняют бетонную смесь. После набора бетоном требуемой прочности опалубку разбирают, выполняют гидроизоляцию и обратную засыпку траншеи. Затем аналогично выполняют работы с противоположной стороны (исключая установку горизонтальных поперечных стержней).

Подкосы для ЖБИ

  • Окрашенный
  • 9
  • Любая

  • Окрашенный
  • 1,2-1,7
  • 1,7-2,4
  • 2,5-4,3
  • Любая
  • 4,0-6,0

Подкосы монтажные для железобетонных изделий

Монтажный подкос или крюк-крюк– это жесткая конструкция без собственных свойств устойчивости. Действует на линейное сжатие и используется для фиксирования элементов в установленной позиции. Это универсальное и распространенное приспособления для крепления невысоких колонн, элементов перегородки, панелей и прочих сборочных компонентов до финального проектного монтажа.Также применяется в каркасно-монолитных постройках.Несущие элементы производятся в соответствии с нормативами ГОСТ для соблюдения коэффициента стойкости.

В основе находится телескопическая конструкция, которая позволяет регулировать длину.Также снабжены фаркопами (за их счет происходит корректировка длины до 500 миллиметров и наклон выверяемой конструкции в необходимом направлении), крюками, анкерами или замками. Изделие типа крюк-крюк характеризуется закрытым корпусом и двумя винтовыми частями формата крюк-крюк. Захватные части цепляют к плитам со специальными отверстиями или к петлям (монтажным или в составе анкеров и струбцин). Для надежной сцепки зев перекрывают запорным механизмом: с поворотной планкой, с особым замком или с втулкой (возможны и другие варианты). Итоговые характеристики зависят от строповочных составляющих. Средний размер подкосов с 150 и до 640 сантиметров. При этом в диапазоне длины от 150 до 380 см, диаметр трубы составляет 46-48 миллиметров с массой в 11-24 килограмма, при длине с 480 до 640 см цифры меняются на 58-60 мм и 30-37 кг соответственно.

В положение, которое устанавливает проект, панель или колонна устанавливаются за счет закручивания корпуса подкоса ЖБИ вокруг своей оси.

Установка и настройка

Для осуществления приблизительной регулировки подкосов используются внутренняя и наружная трубы (за счет движения одной относительно другой). Точная корректировка производится с помощью винтовой пары.

Все составляющие обязательно производятся из коррозионностойких компонентов либо покрываются специальной защитой. Первичное изготовление деталей – заводское.

По факту установки проводится контроль качества работ. Для проверки стоит использовать строительный или лазерный уровень, оценка «на глаз» не даст корректного результата и не обеспечит долгосрочную и надежную эксплуатацию.

Приобрести монтажный подкос для ЖБИ

Компания «ГРУППА СТАНДАРТ» предлагает изделие со всеми сертификатами соответствия под ваши объемы. Доставка осуществляется силами компании, менеджеры сориентируют по оптимальному предложению под ваши условия.

4.2. Ремонт фундаментов, усиление их обоймами и подведением конструктивных элементов (ч. 2)

Устройство обойм без увеличения площади подошвы фундамента чаще всего вызывается некачественным выполнением строительных работ. Так, например, при строительстве одного из жилых домов сборные фундаменты под столбами были выполнены недостаточно качественно, что явилось одной из причин обрушения конструкций [55]. Усиление выполнено путем заключения верхней части фундамента над подушками в железобетонные обоймы (рис. 4.2), что позволило обеспечить более равномерную передачу нагрузки на подушки. В верхней части обоймы установлены анкеры для крепления колонн.

Усиление железобетонными или бетонными обоймами с увеличением площади подошвы фундамента возможно для фундаментов мелкого заложения (из кладки, бетона, железобетона) как подвальных, так и бесподвальных зданий на всю высоту фундамента или его часть (рис. 4.3).

При устройстве обойм нельзя забывать о том, что прочность сцепления усиливаемого фундамента и новой кладки зависит от многих факторов, в том числе от вида и качества составляющих бетона. При усилении железобетонных и бетонных конструкций, находящихся в эксплуатации длительное время, необходимо учитывать возможные отрицательные изменения в наружном слое бетона [54]. Поэтому, устраивая обоймы, не всегда можно быть уверенным в том, что при сцеплении нового бетона со старым гарантируется полная монолитность обоймы и существующего фундамента. В ряде случаев необходимо снимать весь поверхностный слой старого бетона, а для обеспечения восприятия сдвигающих сил на контактной поверхности приваривать арматурные коротыши, применять штрабы, железобетонные шпонки, поперечные металлические балки, анкеры и другие элементы. Свежий бетон укладывается на чистую, шероховатую, влажную поверхность старой кладки с обязательным тщательным уплотнением бетонной смеси.

Читать еще:  Подколонники железобетонные ГОСТ

Железобетонные обоймы, которые охватывают усиливаемый фундамент со всех сторон, плотно обжимая его при усадке бетона, и работают как единое целое, следует считать наиболее простым и надежным способом усиления. Толщины обоймы определяются расчетом с учетом повышения расчетной нагрузки в случае реконструкции. Армирование производят пространственными каркасами, состоящими из замкнутых хомутов. Обычно фундаментные обоймы соединяют с обоймами усиления стен подвала или колонн (см. рис. 4.3). Если стены подвала или колонн не подлежат усилению, то под фундаментными обоймами, устраиваемыми на всю или часть высоты фундамента, устанавливаются дополнительные обоймы на высоту 1—1,5 м [54]. Усиление ленточных и столбчатых фундаментов обоймами повышает также жесткость здания в соответствующем направлении, что особенно важно в случае применения сборных конструкций.

Уширенная часть усиленного фундамента способна воспринимать только часть увеличивающейся нагрузки, а значительная ее часть передается через подошву старого фундамента. При небольшом увеличении нагрузки это допустимо, поскольку выпор грунта в стороны невозможен из-за дополнительной пригрузки элементов уширениями. При большом увеличении нагрузки элементы уширения фундаментов должны быть введены в работу путем предварительной передачи искусственного давления (обжатия). Предварительное обжатие основания производится клиньями (см. рис. 4.3, б) или домкратами, которые устанавливают, например, между рандбалкой и плитой уширения. Съему домкратов предшествует установка металлических стоек-распорок с расклиниванием их, после чего производят бетонирование обоймы (столба). Способы предварительного обжатия рассмотрены в работах [1, 2, 3, 12, 13, 54 и др.]. Увеличение площади подошвы фундамента с одновременным обжатием грунта под элементами усиления обеспечивает немедленное включение в работу уширенной части фундаментов.

Обжатие основания может осуществляться путем поворота элементов уширения в сторону основания [56]. С этой целью элементы уширения объединяются с существующим фундаментом с помощью натяжения арматурных элементов. При отжатии верхней части элементов уширения подошвы от существующего фундамента грунт под их подошвой обжимается, в результате чего происходит некоторая разгрузка основания под существующим фундаментом. При повороте элементов уширения в соединительных стержнях возникают дополнительные напряжения. Расчет усиления фундамента детально рассмотрен в работе [56].

Показанный на рис. 4.4 способ обжатия основания был применен при усилении столбчатых фундаментов одноэтажного лабораторного корпуса в связи с надстройкой второго этажа. Два сборных железобетонных элемента уширения укладывались параллельно длинной стороне существующего фундамента. Между собой элементы уширения соединялись двумя стальными стержнями с нарезанными концами, которые проходили рядом с короткой стороной существующего фундамента. После установки элементов уширения производили небольшое начальное натяжение соединительных стержней. Затем с помощью отжимных болтов верхнюю часть элементов уширения оттягивали от существующего фундамента; в соединительных стержнях увеличивались растягивающие усилия, благодаря чему элементы уширения получали наклон, который вызывал обжатие основания. Усилия в стержнях и отжимных болтах контролировали с помощью динамометрического ключа. После отжатия элементов на необходимую величину зазоры между фундаментом и элементами уширения заклинивали. Такой же способ был также использован при усилении фундаментов здания спортивного комплекса в г. Белорецке. Усиливаемые фундаменты были выполнены из монолитного железобетона. Натяжение арматуры создавалось электротермическим способом.

Швец В.Б., Феклин В.И., Гинзбург Л.К. Усиление и реконструкция фундаментов

Область применения железобетонных труб и их основные характеристики

Канализационные распределители изначально были открытыми проходами и сооружениями из нескольких видов камня или кирпича, теперь же канализационные системы создают из железобетонных труб. Они изготавливаются на арматурном каркасе из высокопрочного бетонного материала.

Железобетонные трубы

Область применения

Железобетонные напорные и безнапорные трубы – конструкции с несколькими функциями. Они используются во всех видах строительства: гражданском, автодорожном, коммунальном, гидротехническом и промышленном.

Бетонные и железобетонные трубы изготовляются по ГОСТу 22000-86, который определяет характеристики, размеры, типы и параметры для таких изделий, изготовляемых различными способами. Этот стандарт не относится к дренажным и водопропускным трубам, которые укладываются под насыпями железных и автомобильных дорог.

Категории

Железобетонные трубы разбиваются на такие категории:

  • Сборные. Такой вид используются при установке любых разновидностей трубопроводов.
  • Монолитные. Переставная или скользящая опалубка стволов позволяет постепенно понижать уровень толщины стен без образования уступов.
  • Безнапорные. Применяются практически во всех сферах, где необходима транспортировка самотечных жидкостей, то есть без использования давления. Они используются для: устройства фекальной и ливневой канализации; отвода грунтовых, хозяйственно-бытовых или производственных сточных вод.
  • Напорные. При помощи такого вида строят канализационные, ливневые и сточные системы, а также осуществляют транспортировку жидкостей под давлением.

Микротоннельные трубы

Завод специальных железобетонных труб производит изделия, которые в дальнейшем используются в микротоннелировании. Основным видом деятельности является производство изделий из бетона для применения в строительных работах.

Микротоннельные трубы могут иметь диаметр от 600 мм до 2000 мм.

Достоинства технологии микротоннелирования:

  • позволяет строить трубопроводы, не вскрывая поверхности и открывая траншеи, что обеспечивает безопасные условия монтажа, нейтрализует опасность для экологии, не меняет городской среды обитания;
  • исключает необходимость дополнительных работ для устройства обходов, переходных мостов, временных сооружений, а также позволяет избежать нарушения движения городских видов транспорта;
  • отсутствует необходимость в использовании дорогостоящих особых способов работ при проходке в водоносных грунтах и обеспечения прокладки трубопровода по запроектированной дороге.

Недостатки и достоинства материала

Начнем с отрицательных качеств.

Большой вес. Конструкции имеют большую массу, за счет чего ограничивается величина перекрываемых пролетов.

Высокая звуко- и теплопроводность. Такие характеристики негативно влияют на уровень стойкости материала к появлению наростов и выщелачиванию.

На заметку. Чтобы защитить конструкцию от разрушения, необходимо снизить влияние внешних факторов на трубы, например, попадание жидкостей.

Образование трещин. Усадка и силовые воздействия приводят к появлению микротрещин. Также нужно проследить, чтобы химический состав транспортируемых жидкостей не влиял агрессивно на бетон.

Важно. Если перемещаемая жидкость или грунты, в которые будет помещаться конструкция, враждебно влияют на железобетон, то материал должен соответствовать повышенным дополнительным требованиям, которые установлены в проекте трубопровода.

Положительные характеристики перекрывают наличие недостатков.

Экономичность. Материал не требует высоких эксплуатационных расходов, если сравнивать с металлом и деревом. На производство таких конструкций затрачивается значительно меньше энергии, чем на каменные или металлические.

Прочность и долговечность. Огнестойкость материала и высокая механическая прочность обеспечивают продолжительный эксплуатационный период. Бетон со временем не крошится, а только становится крепче.

Легкость монтажа и транспортировки. Сооружение железобетонного ствола можно практически полностью сделать механическим. Можно возводить рациональную форму конструкции. Обеспечивается экономия капитальных вложений и понижается стоимость работ по установке. Минимальный уклон водопропускной железобетонной трубы обусловливается технико-экономическими расчетами и не может быть менее 0,005.

Устойчивость к коррозии. Материал не подвержен сейсмическим и остальным динамическим воздействиям, у него хорошая сопротивляемость атмосферному влиянию.

Устойчивость к сжатию и растяжению. Материал достаточно прочен, поэтому со временем не подвергается сжатию и растяжению.

Железобетонная обойма

Железобетонная обойма (железобетонная рубашка) – полезная строительная конструкция, которая отвечает за укрепление стен, столбов, колонн, труб и дымоходов. Основная задача такой конструкции – создать прочную оболочку вокруг укрепляемой структуры. Толщина железобетонной рубашки должна быть не ниже 40-50 мм. Очень редко она снижается до 30 мм, когда необходимо сохранить толщину поперечного сечения укрепляемого столба или перегородки.

Железобетонные трубы служат несколько десятков лет, если их изготовили качественно, а установили правильно. Так можно сократить затраты и полностью окупить их стоимость. Чтобы купить качественную железобетонную трубу, нужно внимательно изучить сопровождающие свидетельства о соответствии стандартам и сертификации.

4.2. Ремонт фундаментов, усиление их обоймами и подведением конструктивных элементов (ч. 2)

Усиление фундамента служит дополнительной мерой по устранению разных дефектов, которые появляются в процессе эксплуатации помещения. Часто необходимость в данной работе является прямым доказательством того, что в процессе стройки были допущены те или иные ошибки, то есть несущая конструкция была выполнена с неполным соблюдением всех правил технологии. Хотя существуют и другие причины, которые могут способствовать разрушению оснований.

Основные причины разрушения фундаментов (силы: а — тяжести, б — сопротивления грунта, в — морозного пучения): 1 – Проседание грунта; 2 – Выталкивание фундамента; 3 – Морозное пучение; 4. Опрокидывание фундамента.

Разрушение основания сооружений

  1. Несвоевременное усиление приводит к печальным последствиям.
  2. Ошибки в проектном составлении плана сооружения.
  3. Неправильное закладывание основания здания.
  4. Изменения, происходящие в грунте, способствующие проявлению других свойств грунтовой массы. Сюда относится набухание, пучение, увлажнение и повышение уровня водных залеганий.
  5. Работы строительного характера, проводящиеся недалеко от здания.
  6. Нагрузка большего характера, чем предполагает использование данной постройки. Точнее, неправильная эксплуатация здания.
  7. Воздействия вибрационного характера как внутри, так и снаружи здания.

Техническое обслуживание бетонных лотков

После монтажа бетонных лотов, в случае если они укомплектованы водоприемными решетками, по истечении 1-2 месяцев должен быть проведен первый контроль, а при помощи динамометрического ключа подтянуты болты. В дальнейшем, контроль и подтяжка болтовых соединений на каждой решетке осуществляются, не реже, чем раз в год. Для обеспечения нормального функционирования линейного водоотвода необходимо очищать систему от песка и мусора. Периодичность очистки определяется условиями эксплуатации. При асфальтировании территории недопустим наезд асфальтоукладчика и другой строительной техники на линии бетонных лотков.

Усиление и ремонт

Усиление наружных фундаментов: 1— трубки для нагнетания цементного раствора, 2— бетон.

Усиление фундамента с использованием подобного элемента в последние годы становится все более популярным в строительстве. Для монтирования буроинъекционных свайных элементов в столбчатых основаниях в самом начале нужно проделать отверстие нужного размера (диаметра). После этого подходит период, чтобы пробурить скважину под сваю. В эти скважины размещают каркасы, которые необходимо сделать из арматуры.

Заливка смеси из бетона осуществляется по инъекционному принципу (отсюда и название), который предполагает бетонную подачу небольшими порциями. Образование трещин в стене зданий во многом объясняется именно деформацией.

Можно выделить 2 основных вида разрушений: механические повреждения и коррозия металла. Механические повреждения проявляются в деформации в виде появления изломов и трещин. Коррозия металла может обернуться полным разрушением, помимо всего снижается прочность фундамента. Все во многом зависит от разрушающего действия и длительности воздействия. В работе по усилению фундамента металлическими обоймами с приливами из бетона понадобятся следующие строительные материалы:

  1. Металлические обоймы.
  2. Бетон.
  3. Сталь.
  4. Раствор.
  5. Арматура.

Монтаж бетонных водоотводных лотков

Выбирая бетонный лоток для организации отвода воды, покупатель, как правило, рассчитывает упростить процесс монтажа за счет внушительных характеристик самой системы.

По сути, это верное предположение и зачастую для установки бетонных лотков требуется меньше временных и материальных затрат в момент подготовки траншеи и всего дренажного «пирога» с использованием мелкого и крупного щебня, который просто засыпается по бортам желобов. Но это если мы говорим о лотках и линейном водоотводе общего назначения, для незначительных или не частых механических нагрузок на линию водоотвода.

Конечно, если речь идет о более длительной и интенсивной эксплуатации лотков с частым наездом автотранспорта на линию канализации, то следует принимать во внимание рекомендации по монтажу, установке и техническом обслуживании бетонных систем водоотведения.

В этой статье мы рассмотрим общие схемы монтажа и частные случаи установки различных типоразмеров бетонных лотков с применением контурных изображений.

Перед тем, как начать монтаж бетонных лотков водоотводных и произвести заливку бетонной обоймы, сначала необходимо подготовить траншею с учетом размеров лотков и, собственно, самой обоймы. Уплотнять основание траншеи рекомендуется на глубину 200 мм с коэффициентом уплотнения ≥ 1. Далее осуществляем разбивку трассы водоотвода и разметку основных, так называемых опорных точек ливневки – дождеприемных колодцев, пескоуловителей, лотков с вертикальным выпуском (водоотводом), а также заглушек. От нижней части трассы, места расположения опорной точки, с помощью шнура следует наметить линию укладки лотков.

Причины образования повреждений

Подводка фундамента: 1 – насыпанный грунт, 2 – слабая кладка, 3 – бетон, 4 – естественный грунт.

  1. Ошибки конструктивного характера. Насыпные грунты в основании имеют особенность со временем уплотняться в значительной степени, что способствует развитию деформации. Насыпной грунт менее стоек по отношению к воздействию воды из системы теплотрассы и канализации, которые являются неисправными.
  2. Несоблюдение размеров глубины для заложения, предусмотренной условиями для надежности работы основания, исключая вероятность замерзания грунтов под подошвой.
  3. Неудовлетворительность эксплуатирования. Неисправность подземной системы канализаций, теплотрассы и водоснабжения способствует вымыванию, уносу и разжижению грунта. Систематичность такого замачивания грунта и фундамента в связи с неудовлетворительным состоянием отмостков, тротуара на периметре зданий. Неисправность труб водосточной системы.
  4. Ошибки производственного характера.
  • нарушения в структуре грунта под фундаментом при проведении подземной работы, когда грунт подвергается метеорологическому воздействию, которое возникает из-за промерзаний, оттаиваний, набуханий или размягчений. Наиболее чувствительными к такому воздействию являются грунты глинистых пород, так как они изменяют свой объем. Размягчение и набухание развивает появление неравномерного осадка;
  • нарушения в структуре грунта вследствие динамического воздействия. Такому воздействию подвержены грунты пылеватого водонасыщенного типа. Чтобы сохранить естественную структуру данного грунта, нельзя рядом со зданием проводить работы, предполагающие динамическое воздействие;
  • проведение строительной или ремонтной работы с нарушениями технологий: пробивание проема в фундаменте без установления разгружающей перемычки или прогона. Раскопка котлована рядом с созданными раньше фундаментами на большую глубину, предусмотренную проектом. Некачественность ее обратной засыпки и затопленность котлована водами хозяйственного или производственного характера;
  • засыпание пазухи котлована водонепроницаемым грунтом.

Усиление фундаментов с помощью инъекционных скважин: а – зона распространения раствора; б – буроинъекционные скважины.

    1. Ошибки, допущенные на этапе проектирования.
  • размещение нового рядом с уже существующими фундаментными конструкциями без организации дополнительного конструктивного мероприятия, направленного на защиту грунта от давления со стороны существующего основания;
  • проектирование фундамента, непосредственно примыкающего к уже существующему с созданием глубины ниже, чем расположена его подошва;
  • увеличение высот подвального помещения благодаря выниманию грунта, что в значительной степени сокращает глубину заложенного (глубина от предполагаемого пола под фундамент должна быть не меньше 50 см);
  • перераспределение нагрузки, не учитывая действительную несущую способность;
  • возведение пристройки или увеличение количества этажей в здании без учета данных о грунтовых основаниях;
  • изменение свойств грунта в связи с подъемом или понижением уровня грунтовой воды в процессе благоустройства территорий района и при отводе подземной воды в систему коллектора.

Заливка усиливающего пояса

Если платформа покрылась трещинами, но их количество со временем не растёт, то ремонт производят путём заливки укрепляющего пояса. Это позволяет предотвратить дальнейшее разрушение основания и защитить его от деформации при низких температурах, но его прочность при этом увеличивается незначительно. Укрепляющий пояс допускается заливать как по всему периметру, так и вдоль одной стены.

  1. В первую очередь производится откопка основания снаружи здания. Внешняя часть фундамента должна быть полностью освобождена от земли, но не следует копать глубже песчаной или щебёнчатой подушки. Оптимальная ширина канавы — 0,8–1,0 м.
    Наружная часть фудамента должна быть полностью освобождена от земли
  2. Затем необходимо уплотнить почву вблизи от фундамента методом ручной трамбовки и насыпать слой щебня фракции 30–50 мм толщиной 10–15 см. Щебень также уплотняется. Поверх него насыпается тонкий слой песка чтобы скрыть острые края.
  3. Поверх песка следует уложить плотный пенопласт толщиной 5 см и накрыть его брезентом для защиты материала от искр в процессе сварки.
  4. Далее в фундаменте необходимо просверлить отверстия диаметром 18–25 мм на расстоянии 60–90 см и вбить в них отрезки арматуры, которые будут служить анкерными креплениями. Обрезки должны выступать из стены на 15–30 см.
  5. К ним приварить внешнюю и внутреннюю сетки, сделанные из арматуры толщиной 10–14 мм, которые должны отступать от основания на 5–7 см. Сетки связываются между собой при помощи кусков арматуры.
    Армирующие сетки соединяются арматурой
  6. В нижней части пояса устраивается дополнительная армирующая сетка для подушки толщиной 25–35 см, а по размеру равной ширине канавы. Подушка снижает нагрузку на грунт без необходимости подкапывать фундамент.
  7. После создания армирующей сетки следует убрать брезент с пенопласта и установить опалубку. Заливка бетона производится в два этапа. После заливки подушки следует выждать 2 дня, а затем приступить к заливке пояса.
    Заливка бетона проводится в два этапа
  8. Через 2 дня можно снимать опалубку, а ещё через 3–5 дней засыпать канаву землёй.
Читать еще:  Устройство стены в грунте из монолитного железобетона

Способ усиления и ремонта железобетонной дымовой трубы

Владельцы патента RU 2443838:

Изобретение относится к области строительства, а точнее к способам ремонта и усиления дымовых железобетонных труб, но может быть также использовано при усилении и ремонте несущих и ограждающих железобетонных конструкций различного назначения. Технический результат: снижение материалоемкости и трудоемкости при выполнении работ. Способ усиления и ремонта железобетонных дымовых труб с помощью усиливающей железобетонной обоймы, устанавливаемой на поврежденной внутренней или внешней поверхности ствола трубы и включающей предварительную зачистку поверхности от разрушенного бетона и следов коррозии, при котором поврежденную и предварительно зачищенную поверхность ствола трубы поочередно и по отдельным участкам покрывают синтетической смолой с армирующими термостойкими волокнами, а в состав бетона обоймы также включают армирующие термостойкие волокна, при этом уплотнение бетона до отверждения смолы производят вибропрессованием, а внешнюю поверхность обоймы формируют оставляемой опалубкой, фиксируемой синтетической смолой с термостойкими волокнами и болтами, которые предварительно закреплены в бетоне ствола трубы. 2 ил.

Предлагаемое изобретение относится к области строительства, а точнее к способам усиления и ремонта железобетонной дымовой трубы, оно может быть также использовано при ремонте и усилении градирен, железобетонных сосудов и резервуаров, а также для ремонта и усиления несущих и ограждающих железобетонных конструкций зданий.

Известен способ усиления ствола железобетонной дымовой трубы с помощью устройства железобетонных обойм («Ремонт дымовых труб, градирен и антикоррозионных покрытий оборудования электростанций» (Справочное пособие). / Под общей редакцией И.В.Захарова, А.И.Курилова. — М.: Энергоиздат, 1982 г., стр.65). Устройство железобетонных обойм на внешней поверхности дымовой трубы является сложной и трудоемкой операцией, в связи с чем обоймы тщательно рассчитываются и разрабатывается проект производства работ. Определяется толщина обоймы, а также проверяется несущая способность фундамента трубы на увеличение нагрузки от веса обоймы и на увеличение ветровой нагрузки. Обоймы армируются вертикальной и горизонтальной арматурой. При значительных разрушениях ствола трубы устраивается сплошная обойма, называемая железобетонной рубашкой. Вертикальная арматура обоймы сваривается с вертикальной арматурой ствола трубы, тем самым обеспечивая совместную работу арматурного каркаса трубы и арматурного каркаса обоймы.

Но указанный способ усиления трубы не обеспечивает совместной работы бетона обоймы и бетонного ствола трубы в следствие усадочных деформаций бетона и недостаточной адгезии «молодого» бетона обоймы и «старого» бетона ствола трубы. Кроме указанного недостатка, перед устройством обоймы вследствие увеличения нагрузки следует производить усиление фундамента трубы. Таким образом, данный способ усиления дымовой трубы обуславливает трудоемкость при проведении работ.

Наиболее близким к заявляемому по технической сущности и достигаемому результату является способ усиления ствола железобетонной дымовой трубы с помощью устройства железобетонных обойм внутри («Ремонт дымовых труб, градирен и антикоррозионных покрытий оборудования электростанций» (Справочное пособие). / Под общей редакцией И.В.Захарова, А.И.Курилова. — М.: Энергоиздат, 1982 г., стр.67). Ствол трубы очищают от разрушенного бетона и промывают содовым раствором для нейтрализации продуктов коррозии.

Для установки арматуры обоймы устанавливают на консоли кольцо из уголка, к которому приваривают стержни вертикальной арматуры. Горизонтальную арматуру подвязывают перед установкой опалубки на высоту яруса. Бетонирование обоймы производят в переставной внутренней опалубке. Уплотнение бетона осуществляют глубинным вибратором.

В связи с тем, что объем бетонирования при данном способе значительно меньше и ветровые нагрузки на ствол трубы не увеличиваются, усиление фундамента, возможно, не потребуется. Вместе с тем, адгезия бетона ствола трубы и бетона обоймы не обеспечивается, вследствие чего создаются предпосылки для коррозии бетона и арматуры ствола трубы.

Таким образом, рассмотрев существующий аналог и прототип, следует отметить, что в настоящее время нет удовлетворительного решения по ремонту и усилению железобетонных дымовых труб.

Задача изобретения — создать способ ремонта и усиления железобетонных дымовых труб, обеспечивающий совместную работу железобетонной обоймы с усиливаемым стволом трубы с минимальными трудозатратами и материалоемкостью.

Технический результат достигается тем, что в способе ремонта и усиления железобетонных дымовых труб, включающем в себя устройство железобетонной обоймы, устраиваемой на внешней или внутренней поверхности ствола трубы, отличающемся тем, что поврежденную и предварительно зачищенную поверхность ствола трубы по отдельным участкам и поочередно покрывают синтетической смолой (эпоксидная смола, полиэфирная смола и т.п.), с армирующими термостойкими волокнами (базальтовое волокно, каолиновое волокно, стекловолокно, углеродное волокно и т.п.), а в состав бетона усиливающей обоймы также включают армирующие термостойкие волокна: укладку и уплотнение бетона производят вибропрессованием в период времени до момента отверждения смолы, при этом внешнюю поверхность обоймы формируют оставляемой опалубкой (тонкослойный металл, стеклопластик и т.п.), которую фиксируют в проектном положении синтетической смолой с термостойкими волокнами и болтами, которые закрепляют в бетоне ствола трубы после зачистки поверхности.

Предлагаемый способ ремонта и усиления железобетонных дымовых труб поясняется фиг.1, где показан разрез усиленной дымовой трубы:

1 — ствол дымовой трубы;

2 — усиливающая обойма.

На фиг.2 показан фрагмент зоны ремонта, поясняющий сущность способа:

1 — ствол дымовой трубы;

2 — синтетическая смола, с термостойким волокнами;

3 — арматурный каркас;

4 — бетон усиленный термостойкими волокнами;

5 — синтетическая смола с термостойким волокном;

6 — оставляемая опалубка;

Помимо адгезии, совместную работу со стволом трубы обуславливает генерация волокон, которые включены в состав бетона обоймы и в состав синтетической смолы.

Поверхность ствола дымовой трубы, подлежащую ремонту:

зачищают и покрывают синтетической смолой с волокнами, устанавливают арматурный каркас, связывают его с арматурным каркасом ствола трубы, устанавливают оставляемую опалубку, покрытую неотвержденной синтетической смолой с волокнами, заполняют зону ремонта бетоном с термостойкими волокнами и производят вибропрессование.

Обработка синтетической смолой с волокнами необходима для повышения адгезии сопрягаемых поверхностей ствола дымовой трубы, обоймы и оставляемой опалубки. Болтами (7), ствола трубы (1) фиксируют оставляемую опалубку (6) и, соответственно, обжатие бетона обоймы (4).

В случае, если внешняя поверхность ствола трубы имеет локальные повреждения бетона, во избежание повышения ветровых нагрузок выполняют ремонт с использованием минимально возможного количества бетона, заполняя бетоном только углубления, вызванные разрушениями, при этом оставляемую опалубку монтируют непосредственно на поверхности ствола трубы.

Таким образом, поставленная задача решается за счет того, что совместная работа железобетонной обоймы со стволом обеспечивается синтетической смолой с термостойкими волокнами и бетоном обоймы с термостойкими волокнами, а также оставляемой опалубкой, поверхность которой, обращенная к внешней поверхности обоймы, перед бетонированием покрывают синтетической смолой с термостойкими волокнами; а вся система — «бетон ствола трубы — бетон обоймы — оставляемая опалубка» — после укладки бетона обоймы дополнительно прессуют и фиксируют болтами, которые до бетонирования обоймы установлены после зачистки поверхности ствола трубы. Следует отметить, что бетон, армированный волокнами, обладает более высокой прочностью и относительно малой усадкой. (Рабинович Ф.Н. Композиты на основе дисперсно-армированных бетонов. Вопросы теории и проектирования, конструкции. Издательство Ассоциации строительных вузов. — М., 2004). Оставляемую опалубку, надежно закрепленную на поверхности бетонной обоймы, следует рассматривать как листовую арматуру, усиливающую всю конструкцию обоймы в целом. Вследствие чего объем бетонирования и, соответственно, вес конструкции может быть существенно снижен (Р.В. Воронков, Железобетонные конструкции с листовой арматурой. — Л.: Стройиздат, Ленинградское отделение, 1975 г.).

Поскольку твердение бетона обоймы при рассматриваемом способе производства работ будет происходить в условиях объемного сжатия, прочность бетона будет существенно выше (Иноземцев Ю.П. Деформационное упрочнение цементных бетонов. Реферат на соискание степени д.т.н., 1991 г.).

Следовательно, усиление и ремонт дымовых железобетонных труб предложенным способом позволит значительно снизить трудоемкость и материалоемкость и, кроме того, повысит надежность конструкции в целом, а также не потребует усиления фундамента трубы.

Способ усиления и ремонта железобетонных дымовых труб с помощью усиливающей железобетонной обоймы, устанавливаемой на поврежденной внутренней или внешней поверхности ствола трубы и включающей предварительную зачистку поверхности от разрушенного бетона и следов коррозии, отличающийся тем, что поврежденную и предварительно зачищенную поверхность ствола трубы поочередно и по отдельным участкам покрывают синтетической смолой с армирующими термостойкими волокнами, а в состав бетона обоймы также включают армирующие термостойкие волокна, при этом уплотнение бетона до отверждения смолы производят вибропрессованием, а внешнюю поверхность обоймы формируют оставляемой опалубкой, фиксируемой синтетической смолой с термостойкими волокнами и болтами, которые предварительно закреплены в бетоне ствола трубы.

Железобетонных труб с металлической обоймой

Для испытания на полигон Воронежского МСУ была доставлена труба, изготовленная по трехступенчатой технологической схеме с металлической обоймой, предварительно напряженной спиральной арматурой и бетонным сердечником. Внутренний диаметр трубы равен 1 м.

Испытательная установка (рис. 51) состоит из силового металлического стенда и нагрузочного гидравлического домкрата грузоподъемностью 500 т.

Стенд имеет три рамы, соединенных поверху и понизу крестовыми связями, а по середине — горизонтальными распорками. Ригели и стойки рам соединены высокопрочными болтами. Для передачи силовых воздействий на испытываемую конструкцию стенд снабжен специальными распределительными балками коробчатого сечения.

Доставленную трубу разрезали на отдельные элементы. Для испытаний использовали три звена длиной 290±3 см.

Была принята схема загружения двумя силами, распределенными по длине звеньев. С этой целью звенья последовательно

устанавливали на два деревянных бруса со скошенными поверхностями. Сверху под распределительную балку была уложена доска для обеспечения более надежного контакта с поверхностью трубы.

Загрузка первого и второго звеньев осуществлялась ступенями по 10 кН (3,7 кН/м), а третьего — по 20 кН (7,4 кН/м). После каждой ступени загружения производили измерения вертикального и горизонтального диаметров звена в двух концевых сечениях по фиксированным точкам на внутренней поверхности. Для этой цели использовали деформометр штангельного типа с точностью измерения 0,1 мм.

Первое звено испытывали с целью предварительной оценки характера его поведения под нагрузкой вплоть до разрушения. При нагрузке 70 кН (25,9 кН/м) по лотку и в замке образовались сквозные продольные трещины с раскрытием до 0,2 — 0,3 мм и произошло частичное отслоение защитного слоя.

Дальнейшее увеличение нагрузки

до 90 кН (33,3 кН/м) привело к разрушению бетонного сердечника и потере устойчивости стального цилиндра в замке на одном из концов испытываемого звена. При этом разрушение бетонного сердечника в сжатой зоне по горизонтальному диаметру не зафиксировано. В результате тщательного осмотра было обнаружено несимметричное расположение домкрата по длине звена, что и явилось причиной преждевременной потери несущей способности звена в результате неравномерной передачи нагрузки. Во втором звене при нагрузке 60 кН (22,2 кН/м) на одном Рис. 51 Установка для испытания предварительно напряженной трубы с металлической обоймой и бетонным сердечником

концевом участке лотка образовалась волосяная трещина длиной около 1 м, при нагрузке 80 кН (29,6 кН/м) появилась продольная трещина в замковом сечении, а нижняя трещина распространилась на всю длину звена с раскрытием до 0,5 мм. Развитие сквозной трещины в замке соответствовало нагрузке 100 кН (37,0 кН/м); при этом трещина раскрылась до 0,2-0,3 мм.

После увеличения нагрузки до 110 кН (40,7 кН/м) была произведена разгрузка звена. При этом полная величина изменения вертикального диаметра составила 29,7 мм, упругая часть деформации равнялась 18,7 мм (63%) и остаточная — 11,0 мм (37%).

Соответствующие данные получены и по горизонтальному диаметру: полная деформация 24,7 мм, упругая 10,3 мм (42%), остаточная 14,4 мм (58%). Характер развития общих деформаций звена в процессе загружения иллюстрируется кривыми, приведенными на рис. 52. Анализ этих зависимостей позволяет выделить три стадии работы трубы под нагрузкой:

I — упругая; II — упругопластическая и III — пластическая.

Каждая стадия характеризуется определенными значениями предельных нагрузок. Для стадии I предельной следует считать нагрузку, которая соответствует образованию продольной трещины в одном из сечений по вертикальному диаметру звена. В данном случае эта нагрузка примерно равна 25 кН/м. Стадия II завершается образованием второго пластического шарнира, что соответствует нагрузке примерно 40 кН/м. В стадии III происходит интенсивное нарастание деформаций «сплющивания» по вертикальному диаметру без разрушения бетона сердечника в сечениях по горизонтальному диаметру. Последнее было прослежено при повторном приложении нагрузки 150 кН (55,5 кН/м). Полная деформация вертикального диаметра составила 56 мм, а горизонтальная — 44 мм.

Анализ результатов испытаний третьего звена по развитию общих деформаций (см. рис. 52) позволяет утверждать, что в качественном отношении характер работы звена под нагрузкой аналогичен имевшему место при испытании второго звена. Отличие состоит лишь в количественных показателях, свидетельствующих о несколько большей несущей способности испытываемого звена.

Максимальная нагрузка при испытании достигала 150 кН (55,5 кН/м).

Полная вертикальная деформация составила 53 мм, а горизонтальная — 39 мм. После загрузки упругая деформация по вертикальному диаметру была равна 24 мм (45 %), остаточная — 29 мм (55 %).

Рис. 52. Изменение вертикального (сплошные кривые) и горизонтального

(штриховые) диаметров второго (кривая 2) и третьего (кривая 1) звена

Соответственно по горизонтальному диаметру упругая деформация составила 17 мм (44%), остаточная — 22 мм (56%).

Таким образом, конструкция железобетонных труб со стальным цилиндром, спиральной напряженной арматурой и бетонным сердечником обладает невысокой несущей способностью по сравнению, например, с виброгидропрессованными трубами.

Под нагрузкой исследуемая труба работает как податливая в трех стадиях: упругой, упругопластической и пластической, что должно быть учтено при расчете такой конструкции.

Характер работы испытанных звеньев свидетельствует о необходимости надежного уплотнения пазух и грунтовой призмы в процессе строительства.

обоймы для колонн из сборного железобетона в Москве и Московской области

обоймы для колонн из сборного железобетона в Москве и Московской области

Производство обойм для монтажа колонн, под любые типоразмеры!
Обойма для колонн из сборного железобетона 500х500 мм,
Обойма ЖБИ для опалубки колонн из сборного железобетона,
Обойма используется для фиксации колонн при возведении каркаса сооружения из сборного железобетона,
Колонны обычно усиливают стальными обоймами,
железобетонными обоймами
Обойма предназначена для фиксации колонн при монтаже каркаса здания из сборного железобетона,
Комлект оснастки для монтажа колонн,
Подкос для жби изделий,

Читать еще:  Как опустить бетонные кольца в колодец вручную

Выпускается полный комплект монтажного оснащения для монтажа колонн
Оборудование для монтажа колонн,
монтаж колонны,
монтаж Ж/Б колонн,
Кондуктор для закрепления колонны,
Монтаж железобетонных конструкций,
Оборудование для монтажа колонн,
кондуктор для монтажа колонн,
обойма для монтажа колонн,
хомут для монтажа колонн,
кондуктор для колонн,
обойма для колонн,
Одноштыревые захваты,
рамочные захватамы

Обоймы для монтaжа колонн от производителя! Kупить обоймы! Oбоймы для колонн различного сечения в мм:
Oбойма 300×300, Обoйма 400х400, Oбойма 500х500, Обоймa 600×600, Обoймa 700×700, Обоймa 800×800,
Обоймa 300×400, Обоймa 300х500, Обoйма 300×600, Oбоймa 400×600, Обоймa 400×820, Обойма 600×820,
Обoйма 820×820. Обoймы для монтaжа колонн yнивеpcальные: 300×300, 300×400 и 400×400;
Mонтажная обойма для колонн, Mонтaжная обойма для мoнтажа кoлонн. Mонтажнaя обоймa для подкосов,
Mонтажнaя обойма для yкосов, Стpoительная обoйма для колонн, Хомyт мoнтажный для колонн,
Стpоительный хомyт для колoнн, Стpоительнaя оснаcткa для монтажа кoлонн,
Oбоймы yнивеpcальные для фиксации колoн,
оcнаcтка для монтажа колoнн: кондуктоp для мoнтажа колонн,
грyзозаxват для мoнтaжа кoлoнн.

Город: Москва

Организация/контактное лицо: Завод строительной оснастки

Телефон: +79190677275

Тендеры и заявки — Металлоконструкции в регионе «Москва»

  • 25.03.2021 в 13:14 Организация (контактное лицо: Евгений) приобретет:
    Готовые изделия 400*400*6900 клинья для монтажа колонн в следующем объеме: 40 шт

Пожелания заказчика: Мне нужны готовые клинья для монтажа колонн 400*400*6900 шт 40 ответить на заявку

01.10.2020 в 07:15 Предприятие ООО приобретет:
Готовые изделия Кондуктор для монтажа колонн 400х400 в следующем объеме: 4 шт
Готовые изделия Кондуктор для монтажа колонн 600х600 в следующем объеме: 4 шт

Пожелания заказчика: Кондуктор для монтажа колонн 400х400-600х600- 4 шт ответить на заявку

01.10.2020 в 07:15 Предприятие ООО приобретет:
Готовые изделия Кондуктор для монтажа колонн 400х400 в следующем объеме: 4 шт
Готовые изделия Кондуктор для монтажа колонн 600х600 в следующем объеме: 4 шт

Пожелания заказчика: Кондуктор для монтажа колонн 400х400-600х600- 4 шт ответить на заявку

21.12.2018 в 11:35 Предприятие ДВК-ГРУПП приобретет:
Металлоконструкции Обойма для колонн жби — 300*400 в следующем объеме: 20 шт

Пожелания заказчика: Прошу рассчитать заявку! Указать минимальную цену и срок изготовления и поставки ответить на заявку

Объявления продать купить Металлоконструкции в регионе «Москва»

ПОКУПАТЕЛЯМ

Вы находитесь на доске объявлений по позиции Металлоконструкции в информационном центре металлоторгующих организаций РФ на Едином металлургическом портале METAL100.RU.

Для того чтобы получить полную информацию по запросу Обоймы для колонн из сборного железобетона в Москве и Московской области Москва вы можете обратиться к нашим сервисам:

  1. Перейдите по ссылке Металлоконструкции выберете необходимый Вам размер, и перед вами раскроется прайс-листы поставщиков в регионе Москва по состоянию на 20.07.2021. Обновление информации происходит ежедневно.
  2. Отправите заявку по запросу «Обоймы для колонн из сборного железобетона в Москве и Московской области Москва», Система автоматически разошлёт всем поставщикам выбранного Вами региона. В течении 5-ти минут Вы получите несколько предложений от поставщиков металлопроката.

Не покупайте дорого, узнайте реальную цену через систему METAL100.RU

ПОСТАВЩИКАМ

Для авторизации в качестве поставщика металлопроката, мы предлагаем Вам разместить на нашем портале Ваш прайс-лист.

После размещения прайс-листа Вам будет открыт полный доступ к Заявкам покупателей.

Вы будете получать прямые звонки покупателей в Ваш офис и переходы на Ваш сайт со страниц портала METAL100.RU

Переход покупателя на Ваш сайт высоко конверсионный, так как посетитель уже выбрал необходимый ему размер металлопроката, узнал Вашу цену и перешёл на Ваш сайт, чтобы совершить покупку.

Пример размещения прайс-листа поставщиков — Металлоконструкции

РЕЙТИНГ METAL100.RU — http://top.mail.ru/Rating/Industry-Ferrous/Month/Visitors/

Если Вы готовы авторизоваться, просим Вас отправить в наш адрес info@metal100.ru письмо содержащую следующую информацию:

— адрес вашего сайта (если имеется);

— адрес ссылки для скачивания актуального прайс-листа в формате Excel. (при наличии ссылки, обновление цен происходит автоматически дважды в день), если ссылка, или данный формат отсутствует на сайте, пришлите Ваш прайс в формате Excel. на адрес info@metal100.ru . (обновление цен, по Вашему требованию);

обоймы ремонтные в Москве

  • Прочие инструменты для ремонта автомобиля
  • Комплектующие для строительных труб
  • Фитинги для канализационных труб

Обойма ремонтная GEBO DSK 2″

Обойма ремонтная GEBO DSK 3/4″ 01.260.28.02

Обойма GEBO ремонтная 1″

Обойма ремонтная GEBO DSK 2″ 01.260.28.06

Фитинг обжим (цанговый) врезка Gebo DSK 1/2″ 1/2″

Фитинг обжим (цанговый) врезка Gebo DSK 1″ 1″

Обойма ремонтная чугунная DSK 2″ оцинкованная Gebo 01.260.28.06

Обойма ремонтная 3/4″ (5/50) Valtec VTr.754.N.05

Обойма GEBO ремонтная 3/4″

Обойма ремонтная чугунная с отводом ANB 1/2″х1/2″ оцинкованная Gebo 01.261.28.0101

Фитинг обжим (цанговый) врезка Gebo DSK 1 1/4 1 1/4″

Фитинг обжим (цанговый) врезка Gebo DSK 3/4″

Ремонтная обойма из чугуна GEBO DSK 3″( 89)

Обойма ремонтная чугунная DSK 1/2″ Оцинкованная Gebo 01.260.28.01

Шип ремонтный ШP12-8-2 СС (500шт в коробке)

Ремонтная обойма из чугуна GEBO DSK 2 1/2″ (76)

Обойма-тройник ремонтная VALTEC 3/4×1/2×3/4 VTr.755.G.0504 (1шт)

Ремонтная обойма из ковкого чугуна для уплотнения отверстий. Gebo Clamps. Тип DSK (2 1/2″)

Железобетонные каркасы

от admin

Колонны обычно усиливают стальными обоймами (рис. 1, а) или железобетонными обоймами (рис. 1, б). Каменную кладку иногда усиливают также и армированными штукатурными обоймами.

Железобетонные колонны крайних рядов (у которых 4-стороннее нара-щивание не всегда возможно осуществить) вместо обойм усиливают рубашками, а колонны, работающие на внецентренное сжатие с большими эксцентриситетами, усиливают также односторонним или двусторонним наращиванием, подобно изгибаемым элементам.

Рис.1. Усиление колонн: а — металлическая обойма, б — железобетонная обойма.

Обоймы выполняют двойную функцию:

  1. сдерживают поперечные деформации усиливаемого элемента, т. е. повышают его прочность на сжатие за счет объемного напряжения,
  2. и воспринимают часть вертикальной нагрузки, т. е. частично разгружают усиливаемый элемент.

Примечание. Функцию сдерживания поперечных деформаций выполняют планки стальных обойм и поперечная арматура (хомуты) железобетонных обойм, функцию восприятия вертикальной нагрузки – соответственно вертикальные уголки и бетон с продольной (вертикальной) арматурой.

Степень объемного напряжения можно повысить, если в планках создать предварительное напряжение (натяжными гайками, электронагревом, попарным стягиванием). Предварительным напряжением можно также повысить и степень включения в работу вертикальных уголков стальных обойм.

Одним из самых простых способов такого преднапряжения является установка заранее перегнутых уголков с последующим их выпрямлением за счет горизонтального стягивания (рис. 2).

После выпрямления уголки превращаются в распорки и в них возникает сжимающее усилие , на величину которого происходит разгружение колонны.

Здесь 0,9 – коэффициент условий работы, учитывающий потери напряжений от обмятия, Аsc – суммарная площадь поперечного сечения уголков, i = tgα .

Приведенная формула справедлива, разумеется, только при наличии надежных упоров в торцах уголков с самого начала их стягивания. Подобным способом эффективно усиливать колонны, работающие как с малыми (а), так и с большими (б) эксцентриситетами.

При усилении колонн многоэтажных зданий следует помнить о том, что нижние реакции распорок на промежуточных этажах создают дополнительные нагрузки на нижележащие перекрытия, поэтому усиление нужно выполнять, начиная с самых нижних колонн.

Рис.2. Усиление колонны предварительно напряженной подпоркой.

При усилении стальными обоймами последние рассматривают как самостоятельные конструкции, в которых несущими элементами являются вертикальные уголки, а планки играют ту же роль, что и планки стальных решетчатых колонн.

Иными словами, положительным влиянием планок на поперечные деформации бетона усиливаемой колонны пренебрегают.

Наибольший эффект усиления достигается при использовании преднапряженных обойм-распорок, которые можно использовать без разгружения колонн. Проектируя их, следует, однако, помнить о том, чтобы усилие Nsp не продавило опорные поверхности перекрытий (покрытия) и не оторвало от колонны сами перекрытия (покрытие), и о том, что стадия монтажа (стягивания вертикальных уголков) является наиболее невыгодной в работе распорок, так как уголки еще не соединены планками и их гибкость велика.

При отсутствии преднапряжения стальные обоймы имеет смысл применять только при условии частичного или полного разгружения колонн (что далеко не всегда возможно осуществить) и при условии плотной подклинки зазоров между концами уголков и опорными поверхностями.

Тогда при действии дополнительной нагрузки уголки следует рассчитывать на основе равенства их продольных деформаций с деформациями железобетонной колонны (точнее всего – совмещая диаграммы сжатия стали и бетона данного класса).

Понятно, что чем меньше нагрузки снято с колонны, тем меньше напряжения в уголках обоймы, тем менее эффективно работает обойма .

При усилении железобетонными обоймами поперечное сечение, если пользоваться рекомендациями справочников (весьма спорными), можно рассчитывать как монолитное с соответствующими коэффициентами условий работы бетона и арматуры наращённой части и с поправками на разные классы бетона старой и новой частей сечения.

Передавать нагрузку на элемент усиления удобнее всего через горизонтальные (упорные) уголки, которые через тонкий выравнивающий слой раствора следует плотно прижать к опорным поверхностям соответствующих конструкций – балок, перемычек, фундаментов и т. п., а затем приварить к вертикальным уголкам (рис. 3).

Рис.3. Схема передачи нагрузки на усиляющий элемент.

Однако возможности передавать нагрузку на вертикальные уголки существенно ограничены, о чем всегда следует помнить:

  1. Во-первых, при усилении промежуточных колонн многоэтажных зданий нагрузка от уголков будет передаваться на нижележащие перекрытия. Для такой передачи должна быть уверенность в том, что эти перекрытия в состоянии воспринять дополнительную нагрузку.
  2. Во-вторых, чтобы передать хотя бы часть нагрузки, необходимо эту часть с перекрытия (покрытия) предварительно снять.

Наконец, в многоэтажных зданиях, чтобы загрузить уголки обоймы нижнего этажа, мало разгрузить перекрытия всех этажей, нужно еще усилить обоймами все выше расположенные колонны, уголки которых будут передавать по цепочке нагрузку на нижнюю обойму.

Если обоймы на выше расположенных колоннах не установить, то на уголки нижней колонны будет передаваться только та часть нагрузки, которая была временно снята с перекрытия одного нижнего этажа.

В силу перечисленных причин использовать в полной мере несущую способность вертикальных уголков без их предварительного напряжения удается крайне редко.
Если вертикальные уголки неплотно и неравномерно прижаты к поверхностям усиливаемого элемента, то последний имеет возможность беспрепятственно деформироваться в поперечном направлении до тех пор, пока не исчезнет зазор, – только тогда планки начнут вступать в работу.

При таком качестве исполнения (к сожалению, не редком) проку от усиления почти нет.

Поэтому при усилении стальными обоймами всегда необходимо предусматривать мероприятия, заставляющие планки немедленно включаться в работу .

Одним из них может быть прижатие уголков инвентарными струбцинами до начала приварки к ним планок, другим – предварительное напряжение планок электронагревом или натяжными гайками (в последнем случае планками являются круглые стержни с резьбой на одном конце).

При этом между поверхностями уголков и усиливаемой конструкции следует проложить выравнивающий слой раствора.

Данные требования особенно относятся к усилению каменных или бетонных простенков, образуемых в существующих стенах при устройстве в них новых проёмов.

При пробивке таких проемов перфораторами (отбойными молотками) образуются «рваные» края, зазоры между уголками и поверхностями простенков достигают нескольких сантиметров и стальная обойма, по существу, становится лишь декорацией.

На Заметку. Поэтому новые проемы в стенах следует не пробивать, а прорезать дисковой пилой .

Далее, при редком расположении планок разрушение усиливаемого элемента может произойти в промежутках между ними. Поэтому планки по высоте необходимо располагать с шагом не более 500 мм и не более наименьшего размера поперечного сечения усиливаемого элемента.

Рис.4. Схема стягивания поперечных планок стальной обоймы.

Наконец, с увеличением ширины простенков влияние планок, расположенных по коротким сторонам сечения, уменьшается. Поэтому, если ширина простенка превышает его толщину в два раза и более, то длинные планки необходимо стягивать попарно болтами, которые играют роль внутренних планок (рис. 4). Их пропускают через отверстия в кладке с шагом не более 0,75 м по высоте и не более двойной толщины простенка (но не более 1 м) по ширине.

Инъекционные работы

ВИДЫ ВЫПОЛНЯЕМЫХ РАБОТ

Наша компания осуществляет инъекционные работы в Москве и Московской области. Мы принимаем заявки из любых регионов России. Огромный опыт в строительной сфере помогает справляться нам даже с самыми сложными случаями.

У нас есть допуск СРО на все виды проводимых работ. Выписку из реестра можно скачать здесь в формате PDF.

Содержание технологии

Метод инъектирования состоит в закачке в тело строительной конструкции или примыкающий слой грунта укрепляющего либо гидроизолирующего состава. На профилактируемый или поврежденный участок воздействуют точечно. Инъекционные работы проводятся на железобетонных, каменных и кирпичных сооружениях, а также для укрепления грунтов.

  • отсутствует потребность в проведении капитального ремонта;
  • работы ведутся круглый год, инъекционные мероприятия не занимают много времени;
  • облегчается ремонт труднодоступных участков, не нужны земельные работы;
  • в отдельных случаях даже не прерывают эксплуатацию сооружения.

Инъектирующий состав подается самотеком или нагнетается в толщу слоя насосом через приспособления в виде стержня – пакеры. Выйти составу назад не дает клапан обратного давления. Пакеры устанавливают в просверленные под углом к основанию узкие отверстия – шпуры.

Сверхтекучий ремсостав с легкостью проникает в мельчайшие поры и трещины. Высокая прочность сцепления гарантирует монолитность обработанного участка. После закачки пакеры демонтируют и заделывают шпуры.

Наши услуги

Компания «ИнъектирЪ» проводит инъектирование с предварительным обследованием объекта. Выезд эксперта за пределы Московской области платный. После заключения договора уплаченная за экспертизу сумма подлежит возврату заказчику.

Перечень работ по инъектированию:

  • ремонт сухих, влажных или сильно текущих трещин, холодных швов бетонных конструкций;
  • усиление кирпичной или каменной кладки микроцементами;
  • устройство отсечной гидроизоляции для создания противокапиллярной защиты;
  • герметизация деформационных швов и проемов для прокладки коммуникаций;
  • укрепление грунтов, создание противофильтрационных завес под фундаментом.

Стоимость работ

УслугаЦена
Инъектирование сухих трещин полимерными составамиот 1 400 руб/п.м.
Инъектирование холодных швов бетонирования цементными составами (микроцементы)от 1 700 руб/п.м.
Инъектирование холодных швов бетонирования полимерными составамиот 1 500 руб/п.м.
Инъектирование сухих трещин цементными составами (микроцементы)от 1 600 руб/п.м.
Инъектирование влажных и напорных трещин полимерными составамиот 1 700 руб/п.м.
Инъектирование влажных и напорных трещин цементными составами (микроцементы)от 1 900 руб/п.м.
Устройство отсечной гидроизоляции методом инъектирования полимерными составамиот 1 800 руб/п.м.
Устройство отсечной гидроизоляции методом инъектирования цементными составами (микроцементы)от 1 800 руб/п.м.
Герметизация деформационных швов методом инъекциейот 1 500 руб/п.м.
Герметизация мест прохода коммуникацийот 6 000 руб/шт
Усиление кирпичной и каменной клади цементными составами (микроцементы) методом инъецированияот 2 200 руб/м2
Усиление кирпичной и каменной клади полимерными составами методом инъецированияот 3 100 руб/м2

На все выполняемые работы предоставляются гарантии.

Ориентировочные цены на наши услуги указаны в прайс-листе. На окончательную стоимость инъектирования влияет местонахождение объекта, условия для проживания, срочность ремонта, порядок оплаты, иные обстоятельства.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты