Mebel-ot-artura.ru

Мебель от Артура
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет на продавливание фундаментной плиты пример

Расчет фундаментной плиты на прочность и продавливание

Расчет фундаментной плиты на продавливание позволяет обеспечить запас прочности основания, вычислить размеры монолитного блока. На изготовление основания затрачивается треть бюджета строительства, поэтому естественным желанием заказчика является максимальная экономия средств.

Расчет фундаментной плиты на прочность необходим для того чтобы знать марку бетона, количество арматуры, а также толщину самой плиты.

Расчет на продавливание необходим для определения минимально возможного класса бетона, толщины фундаментной плиты, количества арматуры внутри нее.

При проектировании зданий на плиту опирают либо стены по периметру, либо колонны, на которые крепятся материалы стен. Поэтому расчеты всегда индивидуальны для каждого объекта.

Конструирование плит с колоннами внутри периметра

Толщина монолитного фундамента под колонну в этом случае рассчитывается исходя из конструктивных особенностей основания:

Схема устройства плитного фундамента.

  • плита может находиться между колоннами;
  • колонна опирается на монолит сверху;
  • ж/б элементы основания сопрягаются друг с другом.

Общим условием является меньшее значение сосредоточенной силы от нагрузок, чем усилия, воспринимаемого бетоном данного сечения (F My/Mmax + Mx/Mult + F/Fmax

Где Mx, My – сосредоточенные моменты, действующие в соответствующих направлениях, Mult, Mmax – предельные моменты, которые может воспринимать бетон в этих же направлениях. Величина F – это сила от внешних нагрузок, Fmax – усилие, воспринимаемое бетоном в расчетном сечении.

При вычислении расчетной площади продавливания учитываются расстояния между гранями колонны, краем плиты (c), размеры сечения (b, a), толщина монолита (h):

A = 0,5h(a + a(c/0,5h) + 2b + 2c + h)

Фундамент часто имеет технологические, эксплуатационные люки, проемы, отверстия. Специальные расчеты проводятся лишь при малом их удалении от места положения колонн (меньше 6h). В вычислениях оперируют сосредоточенными моментами, нормальными силами, они полностью идентичны предыдущим вариантам. Однако имеются специфические особенности расчетов:

  • от центра сечения проводят две прямые к краям отверстия;
  • расчет фундаментной плиты производят без учета получившегося между ними сектора.

Таким образом, расчет фундамента обеспечивает запас прочности для повышения ресурса основания здания, сооружения.

Расчет на продавливание возле стен

При расположении в сложных конструкциях колонн вблизи стен прочности фундамента должно хватать для выдерживания сосредоточенных в этих зонах нагрузок. Поэтому в данном случае используются дополнительные вычисления. Правила расчета при этом не изменяются, однако учитывается сосредоточенный момент лишь в одном направлении (из плоскости стены в колонну). Его принимают равным половине разности моментов изгиба монолитного основания.

Расчет плитного фундамента, в котором колонна находится возле угла стен, не учитывает момент, берется лишь значение продольной силы. Вычисления на отрыв присутствуют в схемах подвешивания плиты к стене, они проводятся в дополнение к вышеуказанным. Отгибы арматуры в зоне опирания колонны принимаются за концентрированное продольное армирование. В этом случае в расчет на прочность добавляется поперечное сечение отгибов, угол их наклона к плите.

Таблица: Необходимое количество бетона в зависимости от толщины фундаментной плиты.

В качестве поперечной концентрированной арматуры также рассматриваются элементы из профилированной стали. Расчет плиты проводится согласно общим правилам, площадь сечения вычисляют в зависимости от толщины полок, стенок профиля.

Существуют методики экспериментального продавливания кусков ж/б плит специальными штампами, повторяющими форму основания колонн (крестообразное, угловое, квадратное сечение). При эксперименте исключается разрушение от изгибающих нагрузок, для чего задаются необходимые параметры армирующего слоя (шаг, диаметр стержней), образцы плит берутся равными 20 см в толщину. Толщина пластин штампов также равна 20 см.

Сложность моделирования поведения железобетона заключается в нелинейности материалов, анизотропности бетона. Касательные напряжения внутри монолитных оснований с опиранием на них колонн имеют следующие изометрические линии. Пример расчета по методике конечных элементов для 20 см плиты с нижней, верхней армосетками из прутков класса А400С диаметром 1 см с шагом в перпендикулярных направлениях 15 см показал:

  • разрушение происходит на шестой ступени приложения продавливающей нагрузки;
  • предельно-полезная нагрузка для заданных условий не превышает 27 кН на квадрат;
  • пределы прочности железобетона равны: растяжения – 1,05 МПа, сжатия – 14,5 МПа;
  • модуль упругости равен 30 ГПа.

В большинстве случаев расчеты показывают, что трещинообразование в монолитном бетоне происходит в направлении 45 градусов от осей, арматурным стержням присущи пластические деформации.

Расчет фундаментной плиты на продавливание – условия и процесс выполнения

Основной функцией фундамента является принятие и равномерное распределение на грунт нагрузок, поступающих от наземной части здания. Чтобы конструкция оказалась работоспособной и не чрезмерно массивной, на застраиваемом участке требуется провести гидрогеологическое исследование грунтов и выполнить проект фундамента, исходя из конкретных условий. При его разработке учитываются различные факторы, в том числе возможные деформации основания, характерные для всех или только отдельных видов подземных конструкций. К примеру, расчет фундаментной плиты на продавливание относится к специфическим вычислениям, а определение несущей способности производится при проектировании любых фундаментов.

Продавливающая нагрузка

Плитный фундамент представляет собой конструкцию, в которой ширина и длина имеют показатели, значительно превышающие ее толщину. В этом случае сосредоточенные нагрузки могут вызвать локальное продавливание бетонного монолита, к примеру, в месте расположения массивного оборудования малой площади, сваи или одной из колонн. Точно выполненный расчет позволяет обойти подобные явления путем усиления конструкции, а именно:

  • увеличения толщины бетонной плиты, зачастую – только в местах сосредоточения нагрузок;
  • расширения подошвы опирающейся конструкции;
  • укладки дополнительных арматурных стержней и наращивания защитного слоя бетона в зоне действия точечной нагрузки;
  • повышения марки бетонного раствора.

Так как сила давления на фундаментную плиту от колонны или столба затрагивает небольшую площадь, ее показатели могут достигать значительных величин. От основания контактной поверхности вглубь фундамента сосредоточенная нагрузка распределяется под углом 45 градусов, что формирует в теле плиты опорную пирамиду, принимающую на себя основное давление от колонны. В результате, на границе между нагруженной и незадействованной частью бетонного монолита постоянно присутствуют растягивающие усилия, что губительно влияет на искусственный камень.

Чем тоньше фундаментная плита или меньше опорная площадь колонны, тем более пагубное воздействие на монолитный бетон оказывает продавливающая нагрузка.

Наглядным примером может служить человек, шагающий по неутрамбованному снегу. Нагрузка от его веса сосредотачивается то на одной, то на другой ноге, поэтому настил с легкостью продавливается. Но стоит только путнику встать на лыжи, как проблемы исчезают, так как опорная площадь увеличивается, за счет чего масса человека начинает распределяться по поверхности снега равномернее. Что касается плитного фундамента, то увеличение его толщины, также как и расширение контактной площади с колонной, приводит к более удачной дислокации нагрузок.

Рассматривая продавливание фундаментной плиты, нельзя обойти частный пример, касающийся точечных свайных опор. В этом случае на плитный ростверк тоже воздействуют сосредоточенные нагрузки, но их распределение в бетонном монолите происходит снизу вверх. Другими словами, схема, описанная выше, получается перевернутой.

Наиболее критичными для бетонной плиты считаются продавливающие нагрузки, действующие сразу в двух направлениях – снизу и сверху, но в разных плоскостях. К примеру, когда колонна расположена между сваями. В этом случае возрастает вероятность продавливания плитного ростверка сразу в нескольких местах.

Расчет на продавливающие нагрузки

Обеспечить запас прочности на продавливание фундаментной плиты, не превысив разумных пределов, поможет соответствующий расчет. Им не стоит пренебрегать в случаях присутствия сосредоточенных нагрузок, иначе затраченные материальные средства на возведение фундамента и наземной части дома окажутся напрасными. Экономия на проекте, в данной ситуации, может привести к фатальным результатам.

Расчет на продавливание плитного фундамента производится для определения основных параметров конструкции, таких как:

  • толщина плиты;
  • общая площадь арматуры – количество и диаметр стержней;
  • класс бетона.

Величины определяются индивидуально, исходя из конструктивных особенностей строения и геологических изысканий грунта на участке. Сам расчет производится по формулам и требованиям государственных или отраслевых нормативов. Привязка объекта к местности выполняется персонально.

Прежде всего, выясняется рабочая толщина монолитной плиты без учета защитного слоя бетона, расположенного с обратной от воздействующей нагрузки стороны. К примеру, если толщина плитного фундамента составляет 500мм, а расстояние от арматурных стержней до ближайшей наружной плоскости монолита – 45мм, то в расчете будет участвовать высота плиты, составляющая 455мм. Этот показатель прибавляется ко всем четырем сторонам опорной части колонны, в результате чего получается размер нижнего основания пирамиды продавливания.

Алгоритм и используемые при расчете плитного фундамента на продавливание формулы зависят от варианта расположения колонн:

  • внутри периметра плиты;
  • у края плиты;
  • возле стен.

Расчетный показатель сосредоточенной силы не должен превышать максимальную нагрузку, которую способен воспринимать бетон определенной марки, усиленный арматурным каркасом. Данное условие является основным для всех расчетов на продавливание. Следует учитывать, что поперечное армирование в значительной степени увеличивает восприятие продавливающих усилий, равномерно распределяя их в толще фундаментной плиты и расширяя зону опорной пирамиды. Дополнительные вертикальные стержни концентрированно располагают в зоне установки колонн, а не по всей площади плиты, в результате чего удается избежать перегруженности фундамента арматурой.

Коэффициент армирования является важной составляющей расчета, поэтому он закладывается еще на стадии проектирования.

Если при расчете плиты на продавливание основное требование по нагрузкам не обеспечивается, то инженеры используют локальное утолщение фундаментной плиты с помощью банкетки. Размеры ее сторон выбирают таким образом, чтобы они могли перекрывать площадь пирамиды продавливания на уровне стыковки банкетки и плиты. Расчет и корректировки продолжают до тех пор, пока значение сосредоточенной нагрузки не окажется ниже максимально возможного усилия, воспринимаемого бетоном.

Расчет фундаментной плиты на продавливание

Произведем проверочный расчет фундаментной плиты на продавливание с учетом усилий, возникающих расчетной схеме в наиболее нагруженной колонне подвального этажа. Помимо продольной силы N в колонных подвального этажа получены изгибающие усилия My и Mz. В этом случае условие прочности при расчете на продавливание будет иметь вид:

,

где F=N=3630 кН – сосредоточенная продавливающая сила;

Mx=Mz/2=5,62/2=2,81 кНм – изгибающий момент в направлении оси OX при расчете на продавливание;

My=My/2=1,6/2=0,8 кНм – изгибающий момент в направлении оси OY при расчете на продавливание;

u – периметр расчетного контура продавливания;

Wb , x – момент сопротивления в направлении момента Mx;w

Wb , y – момент сопротивления в направлении момента My.

,

где a, b – размеры поперечного сечения колонны. a=b=hcol=400 мм.

,

мм 2

,

,

,

условие выполняется, следовательно, момент не корректируем.

,

условие прочности НЕ выполнено. Необходима установка поперечного армирования.

По конструктивным требованиям принимаем шаг поперечных стержней Sw=100 мм h /3=213,3 мм; 300 мм 2 ).

,

условие прочности выполняется, следовательно, несущая способность обеспечена.

Рисунок 4.16 – Схема расстановки поперечного армирования фундаментной плиты

Зону расстановки поперечного армирования принимаем от грани колонны не менее, чем на 1,5h =1,5∙640=960 мм.

Коэффициент запаса при расчете фундаментной плиты на продавливание составляет:

Окончательно принимаем толщину фундаментной плиты h=700 мм.

РАСЧЕТ ДЛИН НАХЛЕСТА И АНКЕРОВКИ

Максимальная длина арматурных стержней, выпускаемых для массового строительства, составляет 11,7 м. Так как габариты фундаментной плиты превышают это значение, то необходима стыковка стержней фонового армирования. Стыковку стержней будем производить внахлестку. Длинна нахлестки принимается не менее значения ll, определяемого по формуле:

,

где l – базовая длина анкеровки;

As , cal – площадь поперечного арматуры, требуемая по расчету;

As , ef – площадь поперечного фактически установленного армирования;

α – коэффициент, учитывающий влияние напряженного состояния арматуры, конструктивного решения элемента в зоне соединения стержней, количества стыкуемой арматуры в одном сечении по отношению к общему количеству арматуры в этом сечении, расстояния между стыкуемыми стержнями. При соединении арматуры периодического профиля с прямыми концами, а также гладких стержней с крюками или петлями без дополнительных анкерующих устройств коэффициент α для растянутой арматуры принимают равным 1,2, а для сжатой арматуры — 0,9. При этом должны быть соблюдены следующие условия:

· относительное количество стыкуемой в одном расчетном сечении элемента рабочей растянутой арматуры периодического профиля должно быть не более 50 %, гладкой арматуры (с крюками или петлями) — не более 25 %;

· усилие, воспринимаемое всей поперечной арматурой, поставленной в пределах стыка, должно быть не менее половины усилия, воспринимаемого стыкуемой в одном расчетном сечении элемента растянутой рабочей арматурой;

· расстояние между стыкуемыми рабочими стержнями арматуры не должно превышать 4ds;

· расстояние между соседними стыками внахлестку (по ширине железобетонного элемента) должно быть не менее 2ds и не менее 30 мм.

В любом случае фактическая длина перепуска должна быть не менее 0,4α⋅l0,an, не менее 20ds и не менее 250 мм.

В качестве одного расчетного сечения элемента, рассматриваемого для определения относительного количества стыкуемой арматуры в одном сечении, принимают участок элемента вдоль стыкуемой арматуры длиной 1,3ll. Считается, что стыки арматуры расположены в одном расчетном сечении, если центры этих стыков находятся в пределах длины этого участка.

Базовая длина анкеровки l вычисляется по формуле:

,

где As – площадь поперечного сечения одного стержня, определяемая по номинальному диаметру;

us – периметр сечения одного стержня, определяемый по номинальному диаметру;

Rbond – расчетное сопротивление сцепления арматуры с бетоном.

,

где η1 – коэффициент, учитывающий влияние вида поверхности арматуры, принимаемый для ненапрягаемой горячекатаной и термомеханически обработанной арматуры класса А равным 2,5;

η2 – коэффициент, учитывающий влияние размера диаметра арматуры, принимаемый равным:

для ненапрягаемой арматуры:

η2 = 1,0 — при диаметре арматуры ds ≤ 32 мм;

η2 = 0,9 — при диаметре арматуры 36 и 40 мм;

Чтобы обеспечить включение в работу дополнительного армирования необходимо укладывать арматурные стержни таким образом, чтобы они перекрывали зону, в которой возникают пиковые значения изгибающих моментов и заходили за ее границы не менее, чем на длину анкеровки. Требуемая расчетная длина анкеровки вычисляется по формуле:

,

где l , As , cal, As , ef – то же что и в формуле для длины нахлестки;

α – коэффициент, учитывающий влияние на длину анкеровки напряженного состояния бетона и арматуры и конструктивного решения элемента в зоне анкеровки. Для ненапрягаемой арматуры при анкеровке стержней периодического профиля с прямыми концами (прямая анкеровка) или гладкой арматуры с крюками или петлями без дополнительных анкерующих устройств для растянутых стержней принимают α = 1,0, а для сжатых — α = 0,75.

Так как все подобранные арматурные стержни имеют диаметр менее 36 мм, то для принятого класса арматуры А500С в бетоне класса B25:

Читать еще:  Как нарастить фундамент в ширину

,

Вычислим базовую длину анкеровки для принятых диаметров арматуры:

ø14А500С:

ø18А500С:

ø20А500С:

В запас несущей способности принимаем . Тогда необходимые по расчету длина анкеровки, длина нахлестки и разбежка стыкуемых стержней представлены в таблице 5.1.

Арматурный стержень

Базовая длина анкеровки,

Арматурные стержни для массового строительства поставляются длиной 11,7 м. Ввиду этого для удобства укладки и минимизации числа арматурных обрезков длина стержней дополнительного армирования принимается делением исходного стержня на равные части (1/2; 1/3; 1/4; 1/5; 1/6). С учетом полученной в проектно-вычислительном комплексе и требуемой длиной анкеровки длина стержней дополнительного армирования под колоннами необходима не менее 3760 мм в направлении оси OX (рисунок 5.1) и не менее 3260 мм в направлении оси OY (рисунок 5.2). Подбираем длину стержней дополнительного армирования 11700/3=3900 мм (3900 > 3760; 3900 > 3260).

Рисунок 5.1 – Подбор длины дополнительного нижнего армирования под колонной в направлении оси OX

Рисунок 5.2 – Подбор длины дополнительного нижнего армирования под колонной в направлении оси OY

В других зонах, требующих установки дополнительного армирования, длину арматурных стержней подбираем аналогичным образом.

Дата добавления: 2019-07-17 ; просмотров: 393 ; Мы поможем в написании вашей работы!

Расчёт плитной части фундамента на продавливание

При расчётах на продавливание и на прочность реактивное давление грунта по подошве фундамента определяют от расчётных нагрузок без учёта собственного веса фундамента и грунта на его уступах, так как обусловленные этими нагрузками давления на грунт уравновешиваются соответствующим реактивным давлением грунта и не вызывают усилий изгиба в теле фундамента. При центральном и внецентренном нагружении соответствующие зависимости будут иметь следующий вид:

,

,

.

Опыты показывают, что продавливание железобетонных фундаментов от вертикальной нагрузки происходит по поверхностям с углом 45° к горизонтальной плоскости. Различают две схемы работы и соответственно расчёта отдельных фундаментов на продавливание в зависимости от вида сопряжения фундамента с колонной.

Работа по первой схеме происходит при монолитном сопряжении колонны с плитной частью фундамента или её подколонника с плитной частью фундамента, а также при стаканном сопряжении сборной колонны с высоким подколонником, когда выполняется условие . В этом случае продавливание плитной части рассматривается от низа монолитной колонны или подколонника на действие продольной силы N и изгибающего момента M (рис. 7, а, б).

Работа по второй схеме происходит при стаканном сопряжении сборной колонны с низким подколонником, когда выполняется условие . В этом случае фундамент рассчитывается на продавливание плитной части от дна стакана (рис. 8), а так же на раскалывание от продольной силы Nс , действующей в уровне торца колонны (рис. 9).

Продавливание отдельного фундамента происходит при образовании наклонных трещин, по границам которых бетон испытывает разрыв. При угле наклона такой трещины, равном 45°, на её границе действуют главные растягивающие напряжения σmt (касательные напряжения отсутствуют), и при достижении σmt предела прочности бетона на растяжение (при расчётах по несущей способности используют расчётное сопротивление бетона растяжению) возникают трещины.

Рис. 7. Схемы образования пирамиды продавливания при стаканном сопряжении сборной железобетонной колонны с высоким подколонником: а – центрально нагруженный фундамент, б – внецентренно нагруженный фундамент

При продавливании плитной части центрально нагруженного фундамента по первой схеме расчёт производят из условия равенства суммы всех сил на вертикальную ось:

,

ui — полусумма оснований i-ой боковой грани пирамиды продавливания;

h,pl = hplas — рабочая высота сечения плитной части;

— размер грани пирамиды продавливания;

Rbt — расчётное сопротивление бетона осевому растяжению с учётом коэффициента условия работы γb1 , учитывающего длительность действия нагрузки;

as расстояние от подошвы фундамента до оси рабочей арматуры сетки С-1.

При наличии подготовки под подошвой фундамента первоначально принимают as = 40 мм, а при её отсутствии — as = 75 мм. В результате условие прочности может быть записано в следующем виде:

,

где um — среднее арифметическое значение периметров верхнего и нижнего оснований пирамиды продавливания, образующейся в пределах высоты h0,pl ,

Как видно из вышеприведенной формулы, продавливающая сила Fpr принимается равной разности значений продольной силы N, действующей на пирамиду продавливания, и произведения величины реактивного давления грунта на площадь большего основания этой пирамиды, расположенного в уровне арматурной сетки С-1. Из рис. 7, а следует, что продавливающая сила численно равна величине отпора грунта, умноженного на разность площадей подошвы фундамента и нижнего основания пирамиды продавливания, так как

Если продавливание происходит от низа монолитной колонны, то в указанных выше формулах вместо размеров подколонника lcf и bcf принимают соответствующие размеры поперечного сечения колонны lc и bc.

При расчёте на продавливание внецентренно нагруженного фундамента по первой схеме проверку прочности упрощают и выполняют для одной наиболее нагруженной грани пирамиды продавливания по формуле

,

bm — средний размер проверяемой грани пирамиды продавливания,

;

F’pr — часть продавливающей силы, приходящаяся на проверяемую грань пирамиды продавливания,

А — часть площади основания фундамента, ограниченная нижним основанием рассматриваемой грани пирамиды продавливания и продолжением в плане её соответствующих рёбер,

Как уже отмечалось, при расчёте внецентренно нагруженного фундамента в плоскости действия изгибающего момента значение pmax вычисляют от расчётных нагрузок, действующих в уровне обреза фундамента. При действии на фундамент изгибающих моментов в двух взаимно перпендикулярных плоскостях расчёт на продавливание выполняют раздельно для каждого из этих направлений. Если продавливание происходит от низа монолитной колонны, то в расчётных формулах вместо размеров подколонника lcf и bcf принимают соответствующие размеры поперечного сечения колонны lc и bc .

При стаканном сопряжении сборной железобетонной колонны с низким подколонником расчёт выполняют по второй схеме (рис. 8) и продольную силу Nc, действующую в уровне торца колонны, определяют из условия

− коэффициент, учитывающий частичную передачу продольной силы N на плитную часть фундамента через стенки стакана;

Ас — площадь боковой поверхности колонны, заделанной в стакан фундамента,

lc , bc — размеры поперечного сечения колонны;

hc,st — глубина заложения колонны в стакан;

N — продольная сила в уровне обреза фундамента;

R′bt расчётное сопротивление растяжению бетона замоноличивания стакана, принимаемое с учётом коэффициента условия работы γb1 , учитывающего длительность действия нагрузки. Для замоноличивания используют бетон класса не менее В15.

Рис. 8. Схема образования пирамиды продавливания при стаканном сопряжении сборной железобетонной колонны с низким подколонником

Проверку прочности на продавливание производят для одной наиболее нагруженной грани пирамиды продавливания по формуле

,

— часть силы продавливания, приходящаяся на проверяемую грань;

h,st — рабочая высота пирамиды продавливания от дна стакана до плоскости расположения растянутой арматуры сетки С-1;

lst , bst — больший и меньший размеры дна стакана;

bm — средний размер проверяемой грани,

;

При невыполнении проверок на продавливание обычно увеличивают размеры плитной части фундамента и прежде всего её высоту h0,pl . Возможен также вариант установки вертикальных каркасов, что повышает прочность на продавливание, однако плитную часть отдельных фундаментов стремятся армировать только сеткой в уровне их подошвы.

При работе фундамента на продавливание по второй схеме требуется выполнить расчёт его прочности на раскалывание.Если колонна менее развита в поперечном направлении, чем фундамент, т.е. при выполнении условия bc / lc ≤ Аb / Аl , проверку прочности производят по формуле

.

Если колонна более развита в поперечном направлении, чем фундамент, т.е. при выполнении условия bc / lc > Аb / Аl , проверку прочности производят по формуле

,

μb — коэффициент трения бетона по бетону, принимаемый равным 0,75;

kgr — коэффициент, учитывающий совместную работу фундамента с грунтом (kgr = 1,3 при наличии засыпки фундамента грунтом; kgr = 1 при отсутствия засыпки фундамента грунтом в подвалах);

Аl , Аb — площади вертикальных сечений фундамента в плоскостях, проходящих по осям сечения колонны параллельно соответственно сторонам lf и bf подошвы фундамента, за вычетом площади сечения стакана (рис. 9).

Рис. 9. Площади вертикальных сечений фундамента Аl (а) и Аb (б) при его расчёте на раскалывание

Если соотношение размеров поперечного сечения колонны таково, что bc / lc 2,5), то в приведенных выше расчётных формулах принимают bc / lc = 0,4 (lc / bc = 2,5). Во всех остальных случаях используют фактические соотношения размеров.

Расчет фундаментов на продавливание

Расчет на продавливание производится из условия, чтобы действующие усилия были восприняты бетонным сечением фундамента без установки поперечной арматуры: при монолитном сопряжении колонны с плитной частью – от верха последней (рис.2, а), при монолитном сопряжении подколонника с плитной частью независимо от вида соединения колонны с подколонником (монолитные или стаканные) при расстоянии от верха плитной части до низа колонны Н1 ≥ (buc – bc)/2 – от верха плитной части (рис.2, б), а при меньшем Н1 – от низа колонны (рис.2, в). Проверка выполнения этого условия производится в обоих направлениях.

Рис.2. Схема образования пирамиды продавливания

а – монолитное сопряжение плитной части с колонной; б – то же, с высоким подколонником; в – то же, с низким подколонником; 1 – колонна; 2 – плитная часть; 3 – подколонник

При расчете фундамента на продавливание определяется минимальная высота плитной части h и назначаются число и размеры ее ступеней или проверяется несущая способность плитной части при заданной ее конфигурации. При расчете на продавливание от верха плитной части принимается, что продавливание фундамента при центральном нагружении происходит по боковым поверхностям пирамиды, стороны которой наклонены под углом 45° к горизонтали (см.рис.2).

Квадратный фундамент рассчитывается на продавливание из условия

где F – расчетная продавливающая сила; k – коэффициент, принимаемый равным 1; Rbt – расчетное сопротивление бетона на растяжение; ba – среднее арифметическое значение периметров верхнего и нижнего основания пирамиды продавливания, образующейся в пределах рабочей высоты сечения h (расстояния от верха плитной части до середины арматуры).

Величины F и ba определяются по формулам:

где р – давление на грунт без учета веса фундамента и грунта на его уступах;

здесь А – площадь подошвы фундамента; Ар – площадь нижнего основания пирамиды продавливания.

Для центрально нагруженных прямоугольных и внецентренно нагруженных квадратных фундаментов принимают схему, в которой рассматривается усилие прочности одной грани, параллельной меньшей стороне основания фундамента (рис.3). Условие прочности проверяют по формуле (7).

Рис.3. Схема образования пирамиды продавливания при внецентренной нагрузке

Расчет производится на действие вертикальной силы N, приложенной по обрезу фундамента, и момента на уровне подошвы подошвы М. В этом случае сила и размер сторон пирамиды продавливания будут:

р и рmax – среднее или наибольшее краевое давление на грунт от расчетных нагрузок:

при центральном нагружении

р = N / А; (14)

при внецентренном нагружении

здесь W – момент сопротивления подошвы фундамента.

Рис.4. Схема образования пирамиды продавливания для фундамента с многоступенчатой плитной частью

если b – b1 lc + 2h2, а другая b1 ≤ bc + 2h2 (рис.6), расчет на продавливание производится из условия

Значение F определяется по формуле (11), b1p и b2p – по формулам:

Площадь многоугольника abcdeg

Если b – b1 2 . (34)

Если b – bc 2 ; (37)

lg и bg – размеры дна стакана.

По прочности на раскалывание эти фундаменты проверяются от действия нормальной силы N в сечении колонны у обреза фундамента по формулам:

где μ` — коэффициент трения бетона по бетону, равный 0,7; γc — коэффициент условий работы фундамента в грунте, равный 1,3; Al, Ab — площади вертикальных сечений фундамента в плоскостях, проходящих по осям колонны параллельно сторонам l и b подошвы фундамента, за вычетом площади сечения стакана.

При bc/lc Ab/Al – по формуле (39). При определении N по формуле (38) отношение bc/lc должно приниматься более 0,4, а по формуле (39) отношение bc/lc – не менее 2,5.

После проведения расчетов на продавливание и раскалывание принимается большее значение несущей способности фундамента.

Если стакан фундамента не армирован, дополнительно производится расчет на продавливание внецентренно нагруженных квадратных и прямоугольных в плане фундаментов от верха стакана. При этом в формуле (7) коэф. k принимается равным 0,75.

6.1. РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ФУНДАМЕНТОВ НА ЕСТЕСТВЕННОМ ОСНОВАНИИ ПОД КОЛОННЫ ЗДАНИЙ И СООРУЖЕНИЙ

6.1.1. Общие положения

Размеры подошвы и глубина заложения фундаментов определяются расчетом основания, приведенным в гл. 5. Расчет конструкции фундамента (плитной части и подколонника) производится по прочности и раскрытию трещин и включает: проверку на продавливание и на «обратный» момент, определение сечений арматуры и ширины раскрытия трещин, а также расчет прочности поперечного сечения подколонника.

Исходными данными для расчета являются: размеры подошвы плитной части; глубина заложения и высота фундамента; площадь сечения подколонника; сочетания расчетных и нормативных нагрузок от колонны на уровне обреза фундамента.

Расчет фундаментов по прочности и раскрытию трещин производится на основное и особое сочетания нагрузок. При расчете фундамента по прочности расчетные усилия и моменты принимаются с коэффициентом надежности по нагрузке по указаниям действующих СНиП, а при расчете по раскрытию трещин — с коэффициентом надежности по нагрузке, равным единице.

При проверке прочности плитной части фундамента на обратный момент необходимо учитывать нагрузки от складируемого на полу материала и оборудования.

При расчете фундаментов по прочности и по раскрытию трещин возникающие в них усилия от температурных и им подобных деформаций принимаются изменяющимися по вертикали от полного их значения на уровне обреза фундамента до половинного значения на уровне подошвы фундамента.

Расчетные характеристики бетона и стали приведены в гл. 4 и принимаются с учетом соответствующих коэффициентов условий работы [5, 9].

6.1.2. Расчет фундаментов на продавливание

Расчет на продавливание производится из условия, чтобы действующие усилия были восприняты бетонным сечением фундамента без установки поперечной арматуры: при монолитном сопряжении колонны с плитной частью — от верха последней (рис. 6.1, а), при монолитном сопряжении подколонника с плитной частью независимо от вида соединения колонны с подколонником (монолитные или стаканные) при расстоянии от верха плитной части до низа колонны H1 ≥ (buc – bc)/2 — от верха плитной части (рис. 6.1, б), а при меньшем H1 — от низа колонны (рис. 6.1, в).

Проверка выполнения этого условия производится в обоих направлениях [8].

При расчете фундамента на продавливание определяется минимальная высота плитной части h и назначаются число и размеры ее ступеней или проверяется несущая способность плитной части при заданной ее конфигурации. При расчете на продавливание от верха плитной части принимается, что продавливание фундамента при центральном нагружении происходит по боковым поверхностям пирамиды, стороны которой наклонены под углом 45° к горизонтали (см. рис. 6.1).

Читать еще:  Устройство ленточного фундамента по слоям

Квадратный фундамент рассчитывается на продавливание из условия

где F — расчетная продавливающая сила; k — коэффициент, принимаемый равным 1; Rbt — расчетное сопротивление бетона на растяжение; ba — среднее арифметическое значение периметров верхнего и нижнего оснований пирамиды продавливания, образующейся в пределах рабочей высоты сечения h , (расстояния от верха плитной части до середины арматуры).

Величины F и ba определяются по формулам:

Расчет на продавливание

Премеры расчетов на продавливание:

  1. Пример 1. Расчет плиты перекрытия на продавливание
  2. Пример 2. Расчет фундаментной плиты на продавливание.
  3. Пример 3. Расчет плиты перекрытия на продавливание в месте опирания на крайнюю колонну
  4. Пример 4. Расчет плитного ростверка на продавливание в месте опирания на сваю
  5. Пример 5. Расчет плитного ростверка на продавливание в месте опирания на ростверк колонны здания

Любую плитную конструкцию (плиту перекрытия, фундаментную плиту или плитный ростверк) при наличии сосредоточенной силы необходимо проверять на продавливание. Причем, сосредоточенной силой может выступать и обыкновенное наличие опоры (колонны или сваи), т.к. в данном месте нагрузка в плите концентрируется и стремится «продавить» плиту.

Обратите внимание, на продавливание проверяют только плитные конструкции! Балки (в том числе балочные ростверки) на продавливание считать не нужно.

В чем суть продавливания? Чем оно опасно?

Если на плиту давить сосредоточенная нагрузка, она пытается выдавить под собой кусочек плиты. Если прочностных характеристик бетона и толщины плиты достаточно, чтобы выдержать продавливающую силу, то конструкция выстоит. Иногда случается, что продавливающая сила превышает несущую способность плиты, тогда в ход идет поперечная арматура. Если и этого недостаточно, приходится увеличивать (иногда локально – в виде капителей под перекрытиями или банкеток над фундаментными плитами) толщину плиты.

При этом сосредоточенная сила пытается именно выдавить кусочек плиты.

Предположим, у нас есть плита определенной толщины, на которую давит сила F. Давление этой силы распределяется по небольшой площадке (на рисунке показана черным) – это и будет верхнее основание пирамиды продавливания. В железобетоне любое усилие распространяется (расширяется) под углом 45 градусов. Поэтому действующая сила будет пытаться выколоть участок плиты, имеющий форму пирамиды и расширяющийся к низу под углом 45 градусов. Нижнее основание пирамиды (показано бордовым) ограничивает контур продавливания внизу плиты. В итоге, мы имеем вот такую пирамиду, пытающуюся выколоться из плиты, и каждая грань этой пирамиды (при отсутствии ограничений, о которых поговорим ниже) наклонена под углом 45 градусов.

Какие факторы влияют на продавливание?

1) Толщина плиты – чем она меньше, тем больше риск продавливания.

2) Величина защитного слоя до рабочей арматуры в основании пирамиды продавливания – чем больше защитный слой, тем меньше рабочая высота сечения, и тем больше риск продавливания (причем, каждые 10 мм играют значительнейшую роль).

3) Величина сосредоточенной нагрузки – чем больше нагрузка, тем хуже для плиты.

4) Размеры площадки, по которой распределена сосредоточенная нагрузка – чем меньше площадка, тем хуже.

5) Класс бетона по прочности – чем меньше, тем хуже.

6) Площадь поперечной арматуры (если она есть) – чем больше площадь, тем лучше плита держит продавливание; хотя здесь есть ограничение в условиях формулы (201) – до бесконечности площадь увеличивать не получится.

В каких случаях необходимо выполнять расчет на продавливание?

1) Если на плите (будь то фундамент или перекрытие) есть сосредоточенная нагрузка – опирается какая-то стойка, оборудование установлено и т.п. В этом случае эта сосредоточенная нагрузка служит продавливающей силой, и чем меньше площадь ее опирания, тем больше вероятность риска продавливания.

2) Если плита опирается на колонну или фундаментная плита – на сваю. В этом случае нагрузка от плиты концентрируется на опоре, и реакция этой опоры служит продавливающей силой, пытающейся выдавить вверх пирамиду из плиты.

3) Если в плитном ростверке колонна опирается где-то между сваями. Здесь, как и в первом случае, нагрузка от колонны служит продавливающей силой.

4) В расчете столбчатого фундамента под колонну подошва также проверяется на продавливание от действия нагрузки от колонны. Обычно в ходе расчета на фундаменте наращиваются ступени до тех пор, пока не будет удовлетворено условие по продавливанию.

Рассматривать расчет на продавливание мы будем на основании п. 3.96 Пособия по проектированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения арматуры к СНиП 2.03.01-84. Обратите внимание, что если считать по российскому пособию к СП 52-101-2003, то там будут другие формулы, и расчет несколько отличается.

Пример 1. Расчет плиты перекрытия на продавливание

На плиту перекрытия давит сосредоточенная нагрузка (допустим, стойка какого-то оборудования или что-то подобное). Сосредоточенная – это не значит, что она приходит в точку, но площадь ее приложения ограничена небольшим участком. Необходимо выполнить расчет плиты перекрытия на продавливание.

Толщина плиты 230 мм, расстояние от нижней грани плиты до оси рабочей арматуры 30 мм, бетон класса В25 (Rbt = 9.7 кг/см² при коэффициенте условий работы 0,9), продавливающая сила F = 3 т, площадка продавливания размером 0,2х0,3 м.

До начала расчета определимся с геометрией пирамиды продавливания. В расчете по высоте участвует не вся плита, а ее рабочая высота h₀ = 230 – 30 = 200 мм. Это объясняется тем, что когда распространяющееся сверху вниз под углом 45 градусов усилие доходит до нижней арматуры, пирамида перестает расширяться, а выкалывается дальше вертикально. Поэтому чем больше рабочая высота сечения, тем лучше для плиты.

Сила F распределена по площадке 0,2х0,3 м, эта площадка служит верхним основанием пирамиды продавливания. Нам необходимо определить размеры основания пирамиды. Сделать это просто графически: т.к. угол наклона граней пирамид 45 градусов, то каждая грань нижнего основания в плане отстоит от каждой грани верхнего основания на величину h₀ = 200 мм (это видно из рисунка).

Если посчитать размеры нижнего основания математически, то мы получим следующие величины:

200 + 2h₀ = 200 + 2∙200 = 600 мм;

300 + 2h₀ = 300 + 2∙200 = 700 мм.

Теперь приступим к расчету. По формуле (200) пособия определим, выдержит ли бетон плиты продавливающую силу.

Найдем периметры нижнего и верхнего оснований пирамиды:

2∙(200 + 300) = 1000 мм = 1 м;

2∙(600 + 700) = 2600 мм = 2,6 м.

Среднеарифметическое значение периметров равно: (1 + 2,6)/2 = 1,8 м (по сути, это периметр, проходящий по средней линии пирамиды).

Найдем правую часть уравнения (200): 1,0∙9,7∙10∙1,8∙0,2 = 34,92 т (здесь 10 – коэффициент перевода кг/см² в т/м²).

Расчет фундаментной плиты на продавливание

Расчет на продавливание производится из условия, чтобы действующие усилия были восприняты бетонным сечением фундамента без установки поперечной арматуры. Это достигается соблюдением условия

где — продавливающая сила, кН;

-коэффициент, зависящий от вида бегона (для тяжелого бетона = I);

— средний периметр фансн пирамиды иродавливания, учитываемых в расчете, м;

  • -высота пирамиды продавливания. м;
  • -расчетное сопротивление бетона растяжению, кПа (для бетона класса по прочности В12.5 = 660 кПа; для B I5 = 750 кПа).

Меньшим основанием пирамиды продавливания является опорное сечение колонны или подколонника. Большим основанием пирамиды продавливания является площадь подошвы фундамента, ограниченная линиями пересечения подошвы фундамента с боковыми гранями пирамиды продавливания. Боковые грани пирамиды продавливания наклонены к горизонтальной плоскости под углом 45°. Высота пирамиды продавливания измеряется от опорного сечения колонны (подколонника) до центра тяжести нижней рабочей арматуры в фундаментной плите. В сборно-монолитных фундаментах допускается опорное сечение колонны принимать на уровне обреза фундамента. При этом пирамида продавливания не должна выходить за границы фундамента. Последнее может иметь место при высоком подколоннике. Если и указанное выше имеет место, высота пирамиды продавливания измеряется от опорного сечения подколонника.

В зависимости от вида расчетов на продавливание (по четырем сторонам для центрально нагруженных квадратных в плане фундаментов или по короткой стороне во всех остальных случаях) определяются величины Q и

При расчете на продавливание по четырем сторонам средний периметр боковой поверхности пирамиды продавливания равен:

где и — соответственно ширина и длина меньшего основания пирамиды продавливания.

Продавливающая сила Q определяется по формуле

где -результирующая вертикальная сила на обрез фундамента, кН;

А — площадь подошвы фундамента, м 2 ;

-площадь большего основания пирамиды продавливания, м 2 ,

При расчете на продавливание по короткой стороне продавливающую силу Q определяют по формуле

где — площадь подошвы фундамента за пределами пирамиды продавливания, отнесенная к рассматриваемой грани пирамиды продавливания

где -максимальное давление грунта на площадь определяется без учета веса фундамента и грунта на его уступах, кПа

Полусумма оснований расчетной боковой грани пирамиды продавливания определяется но формуле

Если фундаментная плита имеет переменное ступенчатое сечение, выполняются проверки на ее продавливание под каждой ступенью, которая рассматривается как подколонник. Если условие не выполняется, необходимо увеличение толщины плиты или применение более высокого класса бетона по прочности.

Расчет продавливания фундаментной плиты

Расчет продавливания фундаментной плитыПроводя расчет плиты фундамента на продавливание, можно с точностью определить габариты монолитного блока и обеспечить нужный уровень прочности фундамента (с запасом). Основная цель проведения расчетов – добиться оптимальных прочностных показателей основания, определив минимально необходимое количество материалов, марку бетонной смеси, способ армирования. Это позволит быть уверенным в эксплуатационных показателях сооружения, потратив наименьшую сумму (насколько это возможно). Способ исчисления зависит от особенностей сооружения будущей конструкции, поэтому в каждом случае его следует проводить в соответствии с имеющимися показателями.

Размещение плит с колоннами внутри периметра

Проводя расчет основания на продавливание колонной (столбами), нужно учитывать вид его конструкции:

  • Плита расположена между столбами.
  • Столб установлен на основание.
  • Все элементы фундамента взаимно сопряжены.

Для всех перечисленных видов конструкции основания существует общее условие: показатель сосредоточенного усилия нагрузки должен быть меньше, чем уровень выдерживаемой силы используемого бетонного раствора (С Схема отдельного основания под колонну

Уровень разгружающей силы фундаментной конструкции плитного типа равен производимой нагрузке собственной массой, которую ограничивает контур площади. Как найти первую уже известно, поэтому ищем вторую:

Н см = (С сеч1 + В пл)(С сеч2 + В пл).

Продавливание фундаментного перекрытия колонной, расположенной над ним, находится по формуле:

С = С сеч – Д сила.

Если конструкция подразумевает сопряжение элементов (основание и колонну), следует применять формулу:

С = С сеч – Д сила – Р усил.

Р усил – уровень усиления разгружающего типа от давления на поверхность почвы.

Для значительного увеличения прочности перекрытий применяется поперечное армирование. Качественное восприятие нагрузок армопоясом практически равно этому показателю бетона. Проводить расчет на продавливание актуально только для плитного основания, так как применение ленточного подразумевает равномерное распределение нагрузок.

Плита с колоннами у края

Еще при проектировании фундамента определяется способ армирования. Арматура, расположенная вертикально, делает конструкции более прочной. Распространенная практика – создание пространственного каркаса, который состоит из 2 горизонтальных поясов арматуры, скрепленных вертикальными прутьями. Для скрепления элементов нужно использовать хомуты из пластика или специальную проволоку – это позволит избежать образования очагов коррозии, появление которых провоцирует внутреннее напряжение во время сварочных работ. Избежав коррозии, ресурс основания становиться значительно больше.

Уменьшить стоимость фундаментной перегородки можно за счет использования вертикального армирования исключительно в местах давления колонн.

Расчет продавливания плитного основания

Проводя расчет для колонн, расположенных у края основания, должен учитываться самый неблагоприятный показатель. Рассчитать продавливание в таком случае можно по формуле:

1 > М у / М макс + М х / М ульт + С / С макс.

М у / М макс – показатели сосредоточенных моментов, которые действуют в конкретных направлениях

М ульт – значение предельных моментов, которые способно выдерживать перекрытие в конкретных направлениях.

Проводя расчет площади, исчисляя придавливание, стоит учесть промежуток между гранями колонны, ширину монолитного основания (Ш осн), размер колонны (С сеч1 и С сеч2), расстояние между колонной и краем фундамента (Р):

П прод = 0.5 В пл (С сеч1 + С сеч1 (Ш осн / 0.5 В пл) + 2 С сеч2 + 2Р + В пл).

Рассчитывая продавливание, нужно взять во внимание отверстия в основании для коммуникационных узлов, ревизионных люков и т. п. Если такие элементы находятся от колонны на расстоянии, меньшем 6В пл – проводятся исчисления с учетом этих моментов. Пример формул в таком случае аналогичен предыдущим, но стоит учесть некоторые особенности:

  • К краям отверстия проводятся 2 прямые линии от центра колонны.
  • Фундаментную плиту рассчитывают без учета сектора, находящегося между этими линиями.

Пример расчета

Как пример, возьмем случай, когда на поверхность перекрытия действует установленная колонна – сосредоточенное давление (действует на определенный участок поверхности). В этом случае нужно определить силу продавливания.

  • Ширина основания (Ш осн): 220 см.
  • Класс бетона: В25 (Р бт = 9.7 кг/см2).
  • Нижняя грань перегородки от оси армопояса находится на расстоянии 0.25 мм.
  • Сила продавливания С прод = 3.5 Т.
  • Площадь продавливания (П род): 0.3 х 0.4 м.
  • Рабочая высота (Р выс): 2 м.

Линии пирамиды продавливания

С прод распределяется по площадке 0.3 х 0.4, на которою воздействует максимальное давление. Теперь нужно найти геометрию пирамиды продавливания. Для начала находятся параметры ее основания. Для этого нужно:

300 + 2 Р выс = 700 мм.

400 + 2 Р выс = 800 мм.

Теперь можно приступать к расчетам.

Для этого используем формулу:

С прод = К бет Х Р бт Х П пер Х Р выс

К бет Схема образования пирамиды продавливания

П пер – среднее значение периметров нижнего и верхнего оснований пирамиды давления (в пределах рабочей высоты). Это значение ищем таким образом:

2 (300 + 400) = 1400 мм = 1.2 м.

2 (700 + 800) = 3000 мм = 3 м.

Ищем среднее значение: (1.2 + 3) / 2 = 2.1 м.

Теперь можно совершать подсчет:

1 (для тяжелого бетона) х 9.7 х 2.1 х 0.2 = 4.074 Т.

Теперь посмотрим, выполнены ли все необходимые условия:

Подготовил
Самохин Олег Юрьевич

Расчёт фундаментной плиты на продавливание

Расчет на продавливание плиты перекрытия

Обычная плита перекрытия является железобетонной конструкцией, длина которой равна ширине комнаты или половине ширины помещения внутри здания.

Читать еще:  Устройство бетонной плиты фундамента

Схема монолитного перекрытия.

Она может опираться на контур помещения полностью или же иметь одну свободную от опоры сторону.

Расчет таких конструкций хорошо известен. Значительно сложнее выполнить вычисление поверхности на продавливание, необходимость в котором возникает, если на ограниченную площадь действует равномерно распределенная нагрузка. Такую нагрузку иногда называют сосредоточенной в пределах небольшой площадки на плите.

Пример 2. Расчет фундаментной плиты на продавливание.

На фундаментную плиту на естественном основании опирается колонна, передающая нагрузку от здания. Требуется выполнить расчет фундаментной плиты на продавливание согласно п. 3.96 Пособия по проектированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения арматуры к СНиП 2.03.01-84.

Толщина плиты 500 мм, расстояние от грани бетона до оси рабочей арматуры 45 мм, класс бетона В20 (Rbt = 8,16 кг/см² при коэффициенте условий работы 0,9), вертикальное усилие в основании колонны N = 360 т, сечение колонны 400х400 мм, расчетное сопротивление грунта основания R = 34 т/м².

Определим h₀ = 500 – 45 = 455 мм.

Площадь верхнего основания пирамиды продавливания равна площади колонны 0,4х0,4 м.

Определим размеры граней нижнего основания пирамиды продавливания (они одинаковые): 0,4 + 2∙0,455 = 1,31 м, площадь нижнего основания пирамиды равна 1,31∙1,31 = 1,72 м².

Согласно пособию, продавливающая сила равна силе N = 360 т за вычетом силы, приложенной к нижнему основанию пирамиды продавливания и сопротивляющейся продавливанию. В нашем случае такой силой служит расчетное сопротивление основания, равное R = 34 т/м². Зная площадь основания пирамиды, переведем расчетное сопротивление в сосредоточенную нагрузку: 34∙1,72 = 58 т. В итоге, мы можем определить продавливающую силу: F = 360 – 58 = 302 т.

Определим периметры оснований пирамиды:

4∙0,4 = 1,6 м – периметр меньшего основания

4∙1,31 = 5,24 м – периметр большего основания.

Найдем среднеарифметическое значение периметров:

(1,6 + 5,24)/2 = 3,42 м.

Определим, чему равна правая часть уравнения (200):

1,0∙8,16∙10∙3,42∙0,455 = 126 т.

Проверим, выполняется ли условие (200):

F = 302 т 126 т – условие не выполняется, фундаментная плита не проходит на продавливание.

Проверим, поможет ли нам установка поперечной арматуры в зоне продавливания. Зададимся поперечной арматурой диаметром 10 мм с шагом 150х150 мм и определим количество стержней, попадающих в зону продавливания (т.е. пересекающих грани пирамиды продавливания).

У нас получилось 72 стержня, суммарной площадью Аsw = 72∙0,785 = 56,52 см².

Поперечная арматура на продавливание должна быть либо в виде замкнутых вязаных хомутов, либо в виде каркасов, сваренных контактной сваркой (ручная дуговая не допускается).

Теперь мы можем проверить условие (201), учитывающее поперечную арматуру при продавливании.

Найдем Fsw (здесь 175 МПа = 1750 кг/см² — предельное напряжение в поперечных стержнях):

Fsw = 1750∙56,52 = 98910 кг = 98,91 т.

При этом должно удовлетворяться условие Fsw = 98.91 т 0.5Fb = 0.5∙126 = 63 т (условие выполняется).

Найдем правую часть условия (201):

126 + 0,8∙98,91 = 205 т.

Проверим условие (201):

F = 302 т 205 т – условие не выполняется, фундаментная плита с поперечной арматурой не выдерживает продавливание.

Проверим также условие F 2Fb: F = 302 т 2Fb = 2∙126 = 252 – условие не выполняется, в принципе, при таком соотношении сил армирование помочь не может.

В таком случае следует локально увеличить толщину плиты – сделать банкетку в районе колонны и пересчитать плиту с новой толщиной.

Принимаем толщину банкетки 300 мм, тогда общая толщина плиты в месте продавливания будет равна 800 мм, а h₀ = 755 мм. Важно определить размеры банкетки в плане так, чтобы пирамида продавливания находилась полностью внутри банкетки. Мы примем размеры банкетки 1,2х1,2 м, тогда она полностью покроет пирамиду продавливания.

Повторим расчет на продавливание без поперечной арматуры с новыми данными.

Площадь верхнего основания пирамиды продавливания равна площади колонны 0,4х0,4 м.

Определим размеры граней нижнего основания пирамиды продавливания (они одинаковые): 0,4 + 2∙0,755 = 1,91 м, площадь нижнего основания пирамиды равна 1,91∙1,91 = 3,65 м².

Согласно пособию, продавливающая сила равна силе N = 360 т за вычетом силы, приложенной к нижнему основанию пирамиды продавливания и сопротивляющейся продавливанию. В нашем случае такой силой служит расчетное сопротивление основания, равное R = 34 т/м². Зная площадь основания пирамиды, переведем расчетное сопротивление в сосредоточенную нагрузку: 34∙3,65 = 124 т. В итоге, мы можем определить продавливающую силу: F = 360 – 124 = 236 т.

Определим периметры оснований пирамиды:

4∙0,4 = 1,6 м – периметр меньшего основания

4∙1,91 = 7,64 м – периметр большего основания.

Найдем среднеарифметическое значение периметров:

(1,6 + 7,64)/2 = 4,62 м.

Определим, чему равна правая часть уравнения (200):

1,0∙8,16∙10∙4,62∙0,755 = 284 т.

Проверим, выполняется ли условие (200):

F = 236 т 284 т – условие выполняется, фундаментная плита с банкеткой выдерживает продавливающую силу без дополнительного армирования.

Расчет плиты на продавливание. Расчет фундаментной плиты на продавливание колонной

Расчет на продавливание

Программа для расчета плиты на продавливание создана в программе Excel и позволяет проследить данные по расчету, что позволит избежать множества ошибок.

В программе Продавливание разработано два варианта расчета: Расчет плиты на простое продавливание и Расчет фундаментной плиты на продавливание колонной

Расчет плиты на простое продавливание

В данных для расчета на простое прдавливание необходимо ввести: рабочую толщину плиты h0, длину площадки продавливания, выбрать из таблички по классу бетона расчетное сопротивление и в результате мы получим Максимальную продавливающую силу и требуемую толщину бетонна

Расчет фундаментной плиты на продавливание колонной

В данных для расчета фундаментной плиты на продавливание необходимо ввести: класс бетона, рабочую толщину плиты, длину базы колонны, ширину базы колонны, расстояние до края сваи по длине, расстояние до края сваи по ширине, продавливающую силу и диаметр вертикальных стержней (Если они нужны по расчету)

В результате вы получите: Значения определяющие необходимость вертикальной арматуры при данной продавливающей силе, если нужна, то при заданном диаметре вертикальных стержней программа определит требуемое их количество.

Данную программу рекомендовано использовать с Научно-техническим отчетом Разработка методики расчета и конструирования монолитных железобетонных безбалочных перекрытий, фундаментных плит и ростверков на продавливание#187

Расчет на продавливание фундаментной пример

Пример продавливание у края плиты (СП)

1 – замкнутый расчетный контур №1, 2 – незамкнутый расчетный контур №2, 3 – незамкнутый расчетный контур №3.

Расчет плиты плоского монолитного перекрытия на продавливание

Цель: Проверка режима расчета на продавливание в постпроцессоре «Железобетон» вычислительного комплекса SCAD

Задача: Проверить правильность анализа прочности на продавливание бетонного элемента при действии сосредоточенной силы и изгибающего момента в случае расположения площадки приложения нагрузки у края плиты.

Соответствие нормативам: СНиП 52-101-2003, СП 63.13330.2012.

Исходные данные:

Аналитическое решение:

В данном случае необходимо проверить прочность трех контуров расчетного поперечного сечения:Аналитическое решение:

контур №1 – замкнутый контур вокруг сечения колонны на расстоянии 0,5h от контура колонны;

контур №2 – незамкнутый контур вокруг сечения колонны на расстоянии 0,5h от контура колонны с продлением контура до свободного края плиты;

контур №3 – незамкнутый контур вокруг сечения колонны на расстоянии 1,5h от контура колонны (контура поверочного расчета без учета арматуры).

Периметр расчетного контура поперечного сечения:

Площадь расчетного контура поперечного сечения:

Предельное усилие, воспринимаемое бетоном:

Момент инерции расчетного контура относительно оси Х, проходящей через его центр тяжести:

Момент сопротивления расчетного контура бетона

Момент инерции расчетного контура относительно оси Y, проходящей через его центр тяжести:[
I_ =2frac ^ > +2cdot L_ left( > >
right)^ =
quad
2frac > +2cdot 0,6left( > right)^ =quad
0,204 м^ .
]

Момент сопротивления расчетного контура бетона

Изгибающий момент, который может быть воспринят бетоном в расчетном поперечном сечении:

Для СНиП 52-101-2003:

Прочность плиты при продавливании:

[
К1 = 0,275 + 0 + 0,275 = 0,55
]

Для СП 63.13330.2012:

Прочность плиты при продавливании:

[
К1 = 0,275 + 0 + 0,1375 = 0,413
]

Незамкнутый контур №2:

Периметр расчетного контура поперечного сечения:

Площадь расчетного контура поперечного сечения:

Координата Х центра тяжести незамкнутого контура относительно левого края плиты:

Предельное усилие, воспринимаемое бетоном:

Момент инерции расчетного контура относительно оси Х, проходящей через его центр тяжести:

Момент сопротивления расчетного контура бетона

Момент инерции расчетного контура относительно оси Y, проходящей через его центр тяжести:

Момент сопротивления расчетного контура бетона

Изгибающий момент, который может быть воспринят бетоном в расчетном поперечном сечении:

Для СНиП 52-101-2003:

Прочность плиты при продавливании:

Для СП 63.13330.2012:

Прочность плиты при продавливании:

Незамкнутый контур №3:

Периметр расчетного контура поперечного сечения:

Площадь расчетного контура поперечного сечения:

Координата Х центра тяжести незамкнутого контура относительно левого края плиты:

Предельное усилие, воспринимаемое бетоном:

Момент инерции расчетного контура относительно оси Х, проходящей через его центр тяжести:

Момент сопротивления расчетного контура бетона

Момент инерции расчетного контура относительно оси Y, проходящей через его центр тяжести:

Момент сопротивления расчетного контура бетона

Изгибающий момент, который может быть воспринят бетоном в расчетном поперечном сечении:

Для СНиП 52-101-2003:

Прочность плиты при продавливании:

Для СП 63.13330.2012:

Прочность плиты при продавливании:

Результаты расчета SCAD:

Узел № 5

Коэффициент надежности по ответственности γn = 1
Бетон
Вид бетона: Тяжелый
Класс бетона: B25

Расчет продавливания фундаментной плиты

Расчет продавливания фундаментной плитыПроводя расчет плиты фундамента на продавливание, можно с точностью определить габариты монолитного блока и обеспечить нужный уровень прочности фундамента (с запасом). Основная цель проведения расчетов – добиться оптимальных прочностных показателей основания, определив минимально необходимое количество материалов, марку бетонной смеси, способ армирования. Это позволит быть уверенным в эксплуатационных показателях сооружения, потратив наименьшую сумму (насколько это возможно). Способ исчисления зависит от особенностей сооружения будущей конструкции, поэтому в каждом случае его следует проводить в соответствии с имеющимися показателями.

Размещение плит с колоннами внутри периметра

Проводя расчет основания на продавливание колонной (столбами), нужно учитывать вид его конструкции:

  • Плита расположена между столбами.
  • Столб установлен на основание.
  • Все элементы фундамента взаимно сопряжены.

Для всех перечисленных видов конструкции основания существует общее условие: показатель сосредоточенного усилия нагрузки должен быть меньше, чем уровень выдерживаемой силы используемого бетонного раствора (С Схема отдельного основания под колонну

Уровень разгружающей силы фундаментной конструкции плитного типа равен производимой нагрузке собственной массой, которую ограничивает контур площади. Как найти первую уже известно, поэтому ищем вторую:

Н см = (С сеч1 + В пл)(С сеч2 + В пл).

Продавливание фундаментного перекрытия колонной, расположенной над ним, находится по формуле:

С = С сеч – Д сила.

Если конструкция подразумевает сопряжение элементов (основание и колонну), следует применять формулу:

С = С сеч – Д сила – Р усил.

Р усил – уровень усиления разгружающего типа от давления на поверхность почвы.

Для значительного увеличения прочности перекрытий применяется поперечное армирование. Качественное восприятие нагрузок армопоясом практически равно этому показателю бетона. Проводить расчет на продавливание актуально только для плитного основания, так как применение ленточного подразумевает равномерное распределение нагрузок.

Плита с колоннами у края

Еще при проектировании фундамента определяется способ армирования. Арматура, расположенная вертикально, делает конструкции более прочной. Распространенная практика – создание пространственного каркаса, который состоит из 2 горизонтальных поясов арматуры, скрепленных вертикальными прутьями. Для скрепления элементов нужно использовать хомуты из пластика или специальную проволоку – это позволит избежать образования очагов коррозии, появление которых провоцирует внутреннее напряжение во время сварочных работ. Избежав коррозии, ресурс основания становиться значительно больше.

Уменьшить стоимость фундаментной перегородки можно за счет использования вертикального армирования исключительно в местах давления колонн.

Расчет продавливания плитного основания

Проводя расчет для колонн, расположенных у края основания, должен учитываться самый неблагоприятный показатель. Рассчитать продавливание в таком случае можно по формуле:

1 > М у / М макс + М х / М ульт + С / С макс.

М у / М макс – показатели сосредоточенных моментов, которые действуют в конкретных направлениях

М ульт – значение предельных моментов, которые способно выдерживать перекрытие в конкретных направлениях.

Проводя расчет площади, исчисляя придавливание, стоит учесть промежуток между гранями колонны, ширину монолитного основания (Ш осн), размер колонны (С сеч1 и С сеч2), расстояние между колонной и краем фундамента (Р):

П прод = 0.5 В пл (С сеч1 + С сеч1 (Ш осн / 0.5 В пл) + 2 С сеч2 + 2Р + В пл).

Рассчитывая продавливание, нужно взять во внимание отверстия в основании для коммуникационных узлов, ревизионных люков и т. п. Если такие элементы находятся от колонны на расстоянии, меньшем 6В пл – проводятся исчисления с учетом этих моментов. Пример формул в таком случае аналогичен предыдущим, но стоит учесть некоторые особенности:

  • К краям отверстия проводятся 2 прямые линии от центра колонны.
  • Фундаментную плиту рассчитывают без учета сектора, находящегося между этими линиями.

Пример расчета

Как пример, возьмем случай, когда на поверхность перекрытия действует установленная колонна – сосредоточенное давление (действует на определенный участок поверхности). В этом случае нужно определить силу продавливания.

  • Ширина основания (Ш осн): 220 см.
  • Класс бетона: В25 (Р бт = 9.7 кг/см2).
  • Нижняя грань перегородки от оси армопояса находится на расстоянии 0.25 мм.
  • Сила продавливания С прод = 3.5 Т.
  • Площадь продавливания (П род): 0.3 х 0.4 м.
  • Рабочая высота (Р выс): 2 м.

Линии пирамиды продавливания

С прод распределяется по площадке 0.3 х 0.4, на которою воздействует максимальное давление. Теперь нужно найти геометрию пирамиды продавливания. Для начала находятся параметры ее основания. Для этого нужно:

300 + 2 Р выс = 700 мм.

400 + 2 Р выс = 800 мм.

Теперь можно приступать к расчетам.

Для этого используем формулу:

С прод = К бет Х Р бт Х П пер Х Р выс

К бет Схема образования пирамиды продавливания

П пер – среднее значение периметров нижнего и верхнего оснований пирамиды давления (в пределах рабочей высоты). Это значение ищем таким образом:

2 (300 + 400) = 1400 мм = 1.2 м.

2 (700 + 800) = 3000 мм = 3 м.

Ищем среднее значение: (1.2 + 3) / 2 = 2.1 м.

Теперь можно совершать подсчет:

1 (для тяжелого бетона) х 9.7 х 2.1 х 0.2 = 4.074 Т.

Теперь посмотрим, выполнены ли все необходимые условия:

Подготовил
Самохин Олег Юрьевич

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector